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Paper

The following presentation is based on a paper titled

Rigorous proof of the Boltzmann-Gibbs distribution of money on
connected graphs

by Nicolas Lanchier.
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Motivation

In equilibrium statistical mechanics it is well-known that the probability pe
that a particle has energy e is well approximated by the exponential
random variable (the Boltzmann-Gibbs distribution). That is,

pe ∼ µe−µe , where µ =
1

T
= inverse of temp.

We extend this principle to economics (this is the main idea of
econophysics).

particles = humans

collisions = interactions
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Model

Consider a connected graph G = (V ,E ) where

Each vertex represents an economic agent and N = card(V ) is the
number of agents.

The edge set E is an interaction network, modeling how the agents
interact.

Each agent is characterized by the amount of money she owns and we
let M be the total number of dollars present in the system. This is
conserved.
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Model

We consider a discrete time Markov chain, ξt , that tracks of the amount
of money each agent has.

ξt : V → N where ξt(x) is the number of dollars agent x ∈ V has.

Since total money in the system is conserved, our state space consist of
the following subset of spatial configurations:

AN,M =

{
ξ ∈ N :

∑
x∈V

ξ(x) = M

}

Note, we call ξ a particular configuration.
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Model

At each time step choose a directed edge {x , y} uniformly at random.

If ξ(x) > 0 (x has at least 1 dollar) we move 1 dollar from vertex
(agent) x to y .

If ξ(x) = 0 nothing happens.

That is, our configuration changes in the following way

ξ ~xy (z) =

{
ξ(z)− χ{z=x} + χ{z=y} when ξ(x) 6= 0

ξ(z) when ξ(x) = 0
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Model Results

Numerical simulations suggest that the probability that an agent has d
dollars is well approximated by the exponential random variable (BG
distribution). Letting T denote the number of dollars per agent,

pd ∼ µe−µd where µ =
1

T
,

when the total number of agents and average number of dollars per agent
is large.
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Model Results

As far as we know, convergence to the exponential distribution has only
been shown numerically. Lanchier provides a rigorous proof.
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Lemma 3

Lemma 3

There exists a unique stationary distribution π such that

lim
t→∞

P(ξt = ξ) = π(ξ), for any configuration ξ, ξ0 ∈ AN,M

Proof.

If a Markov chain is both irreducible and aperiodic. Then, irreducibility
and the fact that the state space AN,M is finite imply the existence and
uniqueness of a stationary distribution π. Furthermore, aperiodicity also
implies that, regardless of the initial configuration, the probability that the
process is in configuration ξ converges to π(ξ). Hence, we need only prove
irreducibiliy and aperiodicity.
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Lemma 3 (Irreducibility)

Definition (Irreducibility)

A Markov chain is irreducible if all its states communicate.

Proof

Since G is connected, for any x , y ∈ V there exists a path
x = x0, x1, · · · , xn = y . In particular, for any ξ ∈ AN,M−1,

pt(ξ
x , ξy ) = P(ξt = ξy | ξ0 = ξx)

≥ p(ξx0 , ξx1)p(ξx1 , ξx2) · · · p(ξxn−1 , ξxn)

= p(ξx0 , (ξx0) ~x0x1)p(ξx1 , (ξx1) ~x1x2) · · · p(ξxn−1 , (ξxn−1) ~xn−1xn)

> 0,

That is, any two configurations ξx and ξy communicate. By induction, it
follows that all configurations communicate because they may be written

(· · · ((ξx1)x2)x3 · · · )xM and (· · · ((ξy1)y2)y3 · · · )yM ,
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Lemma 3 (Irreducibility)

Proof Cont.

where ξ ∈ AN,0 if the all zero configuration and ξx0 denotes the
configuration obtained by adding a dollar to vertex x0.

Since all the configurations in AN,M can be obtained from the all-zero
configuration by adding M dollars, we deduce that all the configurations
communicate, which by definition means that the process is
irreducible.
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Lemma 3 (Aperiodicity)

Definition (Aperiodicity)

An irreducible Markov chain is said to be aperiodic if its period is 1 (how
long it takes to return to the same state).

Proof.

Pick ξ ∈ AN,M such that ξ(x) = 0, then

ξ ~xy = ξ for every {x , y} ∈ V .

That is, for ξ ∈ AN,M such that ξ(z) = 0 for some z ∈ V ,

p(ξ, ξ) =
∑
z∈V

deg(z)χ{ξ(z)=0}

/
(2card(E )) > 0.

Thus, configurations with at least one vertex with zero dollar have period
one. By irreducibility all the configurations must have the period one, from
which it follows that the process is aperiodic.
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Proposition (∗)

The following proposition is used in the proof of lemma 4.

Proposition (∗)
If for an irreducible Markov chain with stationary distribution there exists a
probability solution π to

π(ξ)p(ξ, ξ′) = π(ξ′)p(ξ′, ξ),

for all pairs of ξ, ξ′, then the chain is time-reversible and the solution π is
the unique stationary distribution.
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Lemma 4

Lemma (4)

The distribution π = U(AN,M) is unique and stationary on the state space
AN,M

Proof

If p(ξ, ξ′) 6= 0 then

ξ=ξ′ (’we choose’ as vertex with no money)

p(ξ, ξ′) = p(ξ, ξ) =
∑
z∈V

deg(z)χ{ξ(z)=0}/(2card(E )).

ξ = ηx and ξ′ = ηy for some η ∈ AN,M−1 and {x , y} ∈ E

p(ξ, ξ′) = p(ηx , ηy ) = 1/(2card(E )).
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Lemma 4

Proof Cont.

This shows that
p(ξ, ξ′) 6= 0 ⇐⇒ p(ξ′, ξ) 6= 0. (1)

When π = U(AN,M), ξ 6= ξ′, and p(ξ, ξ′) 6= 0:

π(ξ)p(ξ, ξ′) =
1

2card(E )card(AN,M)
= π(ξ′)p(ξ′, ξ). (2)

Note, (2) is trivially true when ξ = ξ′ and when true p(ξ, ξ′) = 0 by (1).
This implies that the process is time reversible and that the uniform
distribution π is stationary by (∗).
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Lemma 5

Lemma (5)

For all positive integers N,M ∈ N,

card(AN,M) =

(
M + N − 1

N − 1

)
Proof.

Put V = {x1, . . . , xN} and for ξ ∈ AN,M let

φ(ξ) = {ξ(x1) + 1, ξ(x1) + ξ(x2) + 2, . . . , ξ(x1) + . . .+ ξ(xN−1) + N − 1}

define a function φ : AN,M → BN,M , where BN,M is a set of subsets of
{1, 2, . . . ,M + N − 1} with N − 1 elements. If φ is bijective it follows that

card(AN,M) = card(BN,M) =

(
M + N − 1

N − 1

)
.
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Lemma 5

Definition (Recall φ)

φ(ξ) = {ξ(x1) + 1, ξ(x1) + ξ(x2) + 2, . . . , ξ(x1) + . . .+ ξ(xN−1) + N − 1}

Proof.

Injectivity:
Choose ξ, ξ′ ∈ AN,M such that φ(ξ) = φ(ξ′). Then, ξ(xi ) = ξ′(xi ) ∀
i = 1, 2, . . . ,N − 1 and ξ(xN) = ξ′(xN) as ξ ∈ AN,M . That is,

φ(ξ) = φ(ξ′) =⇒ ξ = ξ′.
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Lemma 5

Definition (Recall BN,M)

BN,M is a set of subsets of {1, 2, . . . ,M + N − 1}.

Proof.

Surjectivity:
Let B ∈ BN,M and write B = {n1, n2, . . . , nN−1} with
1 ≤ n1 < n2 < . . . < nN−1 < M + N − 1. Then define the configuration ξ
as

ξ(xi ) =


n1 − 1, for i = 1

ni − ni−1 for i = 2, 3, . . . ,N − 1

M + N − nN−1 − 1 for i = N

.

One sees that ξ ∈ AN,M and φ(ξ) = B, which shows surjectivity.
Moreover, φ is bijective and this completes the proof of lemma 5.
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Theorem 1 (Exponential Distribution)

Theorem

lim
t→∞

P(ξt(x) = d) =

(
M + N − d − 2

N − 2

)/(M + N − 1

N − 1

)
.

In particular, for any fixed d ,

lim
N→∞

lim
t→∞

P(ξt(x) = d) =
e−d/t

T
+ o

(
1

T

)
where T =

M

N
.
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Proof of Theorem 1 - part 1

Proof

From Lemmas 3&4 it follows that:

lim
t→∞

P(ξt(x) = d) = π(ξ ∈ AN,M : ξ(x) = d)

= card{ξ ∈ AN,M : ξ(x) = d}/card(AN,M)

The number of configurations where vertex x has d dollars (the numerator
above) is:

card{ξ ∈ AN,M : ξ(x) = d} = card(AN−1,M−d)
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Proof of Theorem 1 - part 1

Proof cont.

Using Lemma 5 we have that:

lim
t→∞

P(ξt(x) = d) = card(AN−1,M−d)/card(AN,M)

=

(
M + N − d − 2

N − 2

)
/

(
M + N − 1

N − 1

)

This proves the first part of the theorem.
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Proof of Theorem 1 - part 2

Proof cont.

To deduce the second part of the proof, we write the r.h.s. as:

lim
t→∞

P(ξt(x) = d) =
M(M − 1) . . . (M − d + 1)(N − 1)

(M + N − 1)(M + N − 2) . . . (M + N − d − 1)

If we let N go to infinity, we can write:

lim
N→∞

lim
t→∞

P(ξt(x) = d) =
NMd

(M + N)d+1
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Proof of Theorem 1 - part 2

Proof cont.

Let T = M/N be the average number of dollars per vertex which we refer
to as the “money temperature”:

lim
N→∞

lim
t→∞

P(ξt(x) = d) =
NMd

(M + N)d+1
=

(
1

T + 1

)(
T

T + 1

)d

=

(
1

T + 1

)
e−d ln (1+ 1

T
)
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Proof of Theorem 1 - part 2

Proof.

For high money temperatures and in the large population limit, we can
write:

lim
N→∞

lim
t→∞

P(ξt(x) = d) =

(
1

T + 1

)
e−d ln (1+ 1

T
)

=

(
1

T
+ o

(
1

T

))
e−d( 1

T
+o( 1

T ))

=
e−d/T

T
+ o

(
1

T

)
This shows the exponential random variable 1/T approximates the number
of dollars for a given vertex, and finishes the proof.
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Recap

Informally, we have shown that for a connected network of agents who
randomly exchange a dollar with their neighbours, money distribution is
well approximated by the exponential distribution. Moreover, this is true
regardless of the network topology.
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