1 Congruence mod d

Recall the following from the Quotient Remainder handout:

Theorem 1.1 (Quotient Remainder Theorem). Given $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$, there are unique numbers q and r such that

$$n = dq + r, \quad where \ 0 \le r < d \tag{1}$$

Here we call q the quotient when n is divided by d, and r is the remainder when n is divided by d. We can define a relation $\mod d : \mathbb{Z} \to \mathbb{Z}$ as follows:

$$n \mod d = r \iff d \mid n - r \tag{2}$$

Fact: (1) $n \mod d = r \iff r \mod d = n$.

To see this, notice that $n \mod d = r \iff d \mid n - r \iff n - r = dq \iff r - n = d(-q) \iff d \mid r - n \iff r \mod d = n$.

1.1 Notation

The following are equivalent notations for the $\mod d$ relation:

(i)
$$n = dq + r$$

(ii)
$$n \mod d \equiv r$$

(iii)
$$\mod_d(n) = r$$

(iv)
$$n \equiv_d r$$

(v) $n \equiv r \mod d$

$2 \mod d$ is an equivalence relation

Recall from the Equivalence Relations handout the following:

Definition 2.1 (Equivalence Relation). A relation R on a set A all is equivalence relation if the relation has all of the following properties:

- (1) **Reflexive:** For every $a \in A$, aRa,
- (2) Symmetric: For every $a, b \in A$ if aRb then bRa,
- (3) **Transitive:** For every $a, b, c \in A$ if aRb and bRc then aRc.

Fact (2): mod d is an equivalence relation.

To see this, notice the following:

- 1. For any $n \in \mathbb{Z}$, $n \equiv n \mod d$ since $d \mid 0$ and n n = 0,
- 2. by Fact (1), if $n \equiv r \mod d$ then $r \equiv n \mod d$,
- 3. if $n \equiv r \mod d$ and $r \equiv s \mod d$, then $n \equiv s \mod d$, since n = dq + r, r = dp + s and n = dq + dp + s = d(q + p) + s.

2.1 Equivalence Classes mod d

Recall again from the Equivalence Relations handout:

Definition 2.2. Given an equivalence relation R on a set A, for each $a \in A$ we define the equivalence class of a, denoted [a] as follows:

$$[a] = \{x \in A \mid xRa\}. \tag{3}$$

Fact (3): For n = dq + r, [r] is an equivalence class. This follows from Definitions 2.1 and 2.2 Fact (4): $[r_1] = [r_2] \iff r_1 \equiv_d r_2$. To see this, notice the following for $n = dq + r_1$:

- (i) If $[r_1] = [r_2]$ then for any $n \in [r_1] = [r_2]$ we have $d \mid n r_1$ and $d \mid n r_2$. Then clearly $d \mid (n - r_2) - (n - r_1)$. That is, $d \mid r_1 - r_2 \iff r_1 \equiv r_2$,
- (ii) if $r_1 \equiv_d r_2$, then $r_1 = dq + r_2$. That is, $n = dk + r_1 = dk + dq + r_2$. Hence $[r_1] = [r_2]$.