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Abstract

When estimating the risk ρ(X) of a random variable X from historical data or Monte
Carlo simulation, the asymptotic behaviour of the plug in estimator ρ̂n is of utmost impor-
tance. In their celebrated article [19], the Kraätschmer et al. showed that any finite-valued
law-invariant convex risk measure ρ defined on an Orlicz heart HΦ is statistically consis-
tent. That is, the plug-in estimator ρ̂n converges in the almost sure sense to ρ(X). This
result is very general, yet it does not cover the case where ρ is non-convex nor the case
where ρ is defined on the entire Orlicz space LΦ. The aim of this thesis is to fill this gap.
In particular, we prove that any law-invariant risk measure with the Lebesgue property is
statistically consistent on the entire Orlicz space. The Lebesgue property is a continuity
condition that is automatically satisfied by all convex and finite-valued risk measures on
Orlicz hearts. Thus our result can be viewed as a generalization of Theorem 2.6 in [19].
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Chapter 1

Introduction and Motivation

In very general terms, the concept of a risk measure is simply a function that maps a
financial position with a real number such that it “measures” the riskiness of holding that
financial position. Of course, the context of riskiness will depend on the risk measures’ use.
For example, a risk measure may be used to satisfy capital buffer requirements set by the
regulator in order to buffer against unexpected loss. Regardless, only a certain subset of
this mapping will be acceptable to a risk manager (see Section 3.2.1). A particular example
of a risk measure that is widely used, perhaps to the detriment of a risk manager is VaR.
VaR estimates how much a risky position might lose (within a given probability), given
normal market conditions. In industry, it is used to gauge the amount of easily liquid assets
needed to cover possible losses. This measure initially saw many benefits when popularized
by J.P. Morgan and its wide use in industry makes it well studied and modelled. It has a
prominent use in the Basel regulatory requirements as the boundary between expected loss
and unexpected loss. Furthermore VaR quantifies levels of risk that are easily explainable
to non-quants.

The overuse of VaR is thought to be one of the myriad of causes of the global financial
crisis of 2007-2008 [13]. Indeed, it is known that VaR lacks a diversification property of
holding more than one risky positions [27].

In lieu of this and other criticisms, Coherent Risk Measures were introducted by Artzner
et. al in their seminal work, “Thinking Coherently” [2]. They proposed four axioms that
risk measures must satisfy in order to be “coherent” (see Section 3.2.1). Their work was
generalized to convex risk measures, first by Folmer and Schied and then by Delbaen [15,
11]. Work by Cherdito and Li and by Kraätschmer, Schied, et. al. extended convex risk
measures to the Orlicz heart [9, 19].
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Together, these results are very general, yet they do not cover the case where the risk
measure is non-convex nor the case where it is defined on the entire Orlicz space. We
aim to fill this gap. In particular, we prove that any law-invariant risk measure with the
Lebesgue property is statistically consistent on the entire Orlicz space. Thus our result
can be viewed as a generalization of Theorem 2.6 in [19].

This thesis contains the following in order: First we review some preliminary material
required for our understanding of probability theory and functional analysis on convex
risk measures, then we introduce the Orlicz spaces that we will be working on. Finally,
we concluded with the final result of this thesis. An appendix section collects various
intermediate results that were useful in the final proof. As an aside, the author hopes that
it is an approachable read for those interested in convex risk measures.

1.1 Estimating Risk, The Strong Law of Large Num-

bers and Glivenko-Cantelli’s Theorem

A layman unfamiliar with the particulars of probability may assume that risk measurement
is much like a casino where the probabilistic structures of the games are generally known.
However, a risk manager is faced with concurrent dilemmas: (1) The risk manager does
not know the outcome of an event until is has occured, and even worse, (2) they cannot
make any assumptions of the probabilistic structure of an economic situation.

To have any hope of being able to manage risk, the risk manager must rely on historical
information to make inferences on the true probabilistic structure of the world through the
use of the empirical distribution. Via the strong law of large numbers a risk manager can be
assured (under the assumption that each realization of an event is independent of others)
that the empirical distribution created by many realizations of the random variable of
interest will differ from the true distribution by a probability of 0. Indeed, this method is
exploited in industry to estimate the distribution of losses under a sequence of realizations.

Lets make more precise the law of large numbers and the empirical distribution.

Definition 1.1.1 (Empirical Distribution Function). Let Xn be a sequence of i.i.d. random
variables on (Ω,F ,P) having common distribution function F . The empirical distribution
function for (X1, · · · , Xn) is defined by

Fn(x) =
1

n

n∑
k=1

1{Xi≤x}.
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We make the note that the distribution function is right-continuous, that is for any
xn ↓ a, we have F (xn) → F (a). This right-sided continuity is a matter of historical
preference and one can similarly construct a left-continuous version.

Definition 1.1.2 (Strong Law of Large Numbers (SLLN)). Let (X1, · · · , Xn) be a sequence
of i.i.d random variables such that E[Xn0 ] < ∞. Denote Sn =

∑n
i=1Xn. Then as n → ∞,

we have
Sn

n

a.s.→ E[Xn0 ].

Moreover, when Xn0 ∈ L1, we have,

E
[∣∣∣∣Sn

n
− E[Xn0 ]

∣∣∣∣]→ 0.

We make note that in the above definition of the empirical distribution that each
E[1{Xi≤x}] < 1 and hence by the strong law of large numbers, the empirical distribution
function converges to the true distribution as n → ∞ almost surely. That is,

Fn(x)
a.s.→ F (x).

The risk manager may use the Kolmogorov-Smirnov statistic, to test the goodness of
fit between the empirical distribution created by sampling and the assumed distribution
that the samples have. Such a statistic is an application of the following theorem,

Theorem 1.1.3 (Glivenko–Cantelli Theorem). Suppose Fn(x) is a sequence of random
variables as in Definition 1.1.1. We know by SLLN for that every fixed x, we have that
Fn(x) converges almost surely to F (x). Glivenko and Cantelli tells us that,

sup
x∈R

|Fn(x)− F (x)| a.s.→ 0.

The above theorem is also known as the Fundamental Theorem of Statistics and strength-
ens the asymptotic properties of the empirical distribution function.

Let us take a moment to dive a bit deeper into Glivenko-Cantelli’s theorem. In par-
ticular, it strengthens the usual SLLN convergence to uniform convergence of Fn to F .
The reader may note that Fn(x)

a.s.→ F (x) already implies uniform convergence when F
is continuous, since distributions are bounded and monotone. However, the conclusion
of Glivenko-Cantelli’s theorem strengthens uniform convergence to intervals that contain
discontinuities. That is, Fn is a reasonable estimate of F independent of x chosen [16, 29].

For an introductory treatment of the above process in view of finance, we direct the
reader to [37]. For a comprehensive treatment of risk measure procedures, the reader can
see [10].
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An Example of SLLN and Glivenko-Cantelli’s Theorem

Suppose we take repeated realizations of X ∼ N (0, 1) and create the empirical distribution
as in Definition 1.1.1. As n gets very large, we can see that Fn(x) becomes a better
approximation of F (x).

Figure 1.1: Empirical distributions with the normal distribution overlayed for sample sizes n = 50, 100, 1000, 100000.

Here we see the SLLN in action as n becomes large. That is, for a fixed x ∈ R we find
that Fn(x) is a good enough approximation of F (x). Furthermore, by Theorem 1.1.3, we
can find an arbitrary uniform bound between Fn and F regardless of x chosen.
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Chapter 2

Preliminaries

This preliminaries section contains what the author believes is required for consistency of
the lebesgue risk measures. It contains has two parts, some measure theory the author
reviewed while attempting to understand the material in the [9, 19], and a lot of basic
functional analysis that the author felt was useful in the formation of Lp spaces. Although
this section was the most valuable to the author, it perhaps has the least valuable to the
reader. This section can clearly be skipped for readers who have knowledge in either areas
expanded upon in this section.

Throughout this thesis, we consider an non-atomic measure space, denoted (Ω,F ,P).
Furthermore, we take our random variables from the L0 := L0(Ω,F ,P) space and we do
not make a distinction between random variables that are equivalent P-almost surely.

2.1 Some Measure Theory

We now recall some basic definitions and results from Measure Theory. We will then move
to after which we will move towards probability theory. Probability theory is the ground
on which this thesis is built upon. A comprehensive treatment of what is forthcoming can
be found in [14, 35, 16].

We first construct sets that are relevant to us. These sets are constructed so that we
can measure and thus compare them.

Definition 2.1.1 (Measurable Space). A Measure Space is an ordered pair (Ω,F) where
Ω is a set and F is a collection of subsets of Ω, that satisfy the following axioms:
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1. The empty set ∅ and Ω itself belong to F .

2. For any member, say E, in F , the complement, Ω \ E is also a member of F .

3. Countable union of members of F is also a member of F .

If F satisfies the above conditions, then it is a σ-algebra.

Once we have the sets that we can measure, we can move on to the properties of the
measure that are useful to us.

Definition 2.1.2 (Measure). A measure is a function µ : F 7→ R+ such that

µ

(⋃
n∈N

En

)
=

∞∑
n=1

µ(En)

for any pairwise-disjoint members En of F .

1. µ is bounded if µ(Ω) < ∞.

2. µ is σ-finite if there are countable pairwise disjoint members En of F such that
µ(En) < ∞ and

⋃
n∈NEn = Ω.

Clearly if µ is bounded, then it is also σ-finite, since we know that ∅ ∩ Ω = ∅ and
µ(∅ ∪ Ω) = µ(Ω) < ∞. However, the converse is not necessarily true.

A measurable space endowed is a measure is them a measure space denoted by the
triple (Ω,F , µ). An immediate consequence of the previous definition is as follows:

Theorem 2.1.3 (Continuous Measure). For E ∈ F , µ is continuous from below at E
if for any (En)n≥1 ∈ F such that En ↑ E, then we have,

µ(En) → µ(E).

Similarly, for E ∈ F , µ is continuous from above at E if for any (En)n≥1 ∈ F such
that En ↓ E and there is some n0 where µ(En0) < ∞, then we have,

µ(En) → µ(E).

Once we have our measurable sets and a method for measuring them, we need to
consider what type of functions interest us. In particular, we only see relevance in functions
wherein its inverse is one of our measurable sets.
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Definition 2.1.4 (Measurable Functions). A function f : ((Ω,F) 7→ (R,B) is F-measurable
or simply measurable if for any B ∈ B we have

f−1(B) := {ω ∈ Ω : f(ω) ∈ B} ∈ F .

Using tests for measurability (Lemma A.1.3), the following useful facts emerge,

1. For f : Ω → R+, there exists a sequence of nonnegative simple functions (fn)n∈N such
that fn ↑ f .

2. For measurable functions f, g : Ω → R and α ∈ R, αf , f + g and fg, if they exist,
are also measurable.

3. For f : Ω → R, f+ := sup(f, 0), f− := sup(−f, 0) and |f | := f+ + f−, if they exist,
are measurable.

4. For a measurable sequence of functions fn : Ω → R, sup fn, inf fn, lim sup fn,
lim inf fn, if they exist, are also measurable.

5. For a measurable sequence of functions fn : Ω → R, if fn → f pointwise, then f is
measurable.

An immediate consequence of Definitions A.1.2 and 2.1.4 is that we can define a se-
quence of real-valued measurable functions on Ω, denoted (fn)n∈N, which leads to the
following theorems which are of great importance in measure theory:

Lemma 2.1.5 (Fatou’s Lemma). Fix a measure space (Ω,F , µ) and put L+ as the space
of all measurable functions from Ω to [0,∞].

If (fn) is a sequence in L+ then,∫
Ω

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
Ω

fndµ.

A trivial corollary to Fatou’s Lemma in [14] is as follows,

Corollary 2.1.6. Fix a measure space (Ω,F , µ) and put L+ as the space of all measurable
functions from Ω to [0,∞].

If (fn) is a sequence in L+ and f is in L+ such that fn
µ→ f , then∫

Ω

fdµ ≤ lim inf
n→∞

∫
Ω

fndµ.
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Theorem 2.1.7 (Dominated Convergence Theorem). Fix a measure space (Ω,F , µ). For
(fn) ∈ L0 a function g ∈ L1such that |fn| ≤ g a.e., we have

−∞ <

∫
(lim inf

n→∞
fn)dµ ≤ lim inf

n→∞

∫
fndµ ≤ lim sup

n→∞

∫
fndµ ≤

∫
(lim sup

n→∞
fn)dµ < ∞.

As implied in the title, we are interested in the statistical properties of a risk measure.
This requires us to work on a space less rich than a general measure space. In fact, we
will run into trouble if we were to consider a general measure. Thus we restrict ourselves
to a particular finite measure with certain properties as will be stated. The discussion of
measure theory above applies wholly to probability theory.

When dealing with probability theory, we refer to a Measure Space as a Probability
Space. That is, a probability space is a measure space endowed with the complete measure
P such that, P : (Ω,F) → ([0, 1],B[0,1]), and P(Ω) = 1. A measurable set in the σ-algebra
F is an event. Finally, a measurable function X is a random variable which is a mapping
X : (Ω,F) → (R,B(R)).

Definition 2.1.8 (Probability Law). The Probabilty Law of a random variable X is
defined by

PX(B) = P[X−1(B)]

for any B in the Borel σ-algebra B(R).

With the probability law defined, we can speak of types of convergence in our probability
space. We go from the strongest to the weakest.

The strongest form of convergence of interest is,

Definition 2.1.9 (Almost Sure Convergence). A sequence of random variables (Xn)n∈N
converges almost surely to a random variable X, denoted Xn

a.s→ X as n → ∞ if there
is a member of F , say E0 such that P(E0) = 1 and Xn(ω) → X(ω) as n → ∞, for every
ω ∈ E0.

The above almost sure convergence implies the weaker convergence in probability,

Definition 2.1.10 (Convergence in Probability). A sequence of random variables (Xn)n∈N

converges in probability to a random variable X, denoted Xn
P→ X as n → ∞ if for

any ε > 0 we have P(|Xn −X| ≥ ε) → 0.

8



Convergence in probability has the following necessary and sufficient condition that is
quite useful [14].

Xn
P→ X if and only if for all subsequences Xnk

of Xn there exists a further subsequence

Xn′
k

a.s.→ X.

When in a probability space, our integrals are denoted as follows,

Definition 2.1.11 (Expectation). When X is integrable, it’s integral is denoted E[X] and
is called the expectation of random variable X:

E[X] =

∫
Ω

X(ω)dP(ω) =
∫
R
xdPX(x)

Using our definition of expectation, we have convergence in Lp norm,

Definition 2.1.12 (Convergence in Lp norm). Fix some p ≥ 1, a sequence of random
variables (Xn)n∈N converges in Lp norm to a random variable X,if E[|Xn|p] and E[|X|p]
are finite and

lim
n→∞

E[|Xn −X|p] = 0.

Such a convergence is denoted Xn
Lp

→ X or Xn

∥·∥Lp→ X. Convergence in Lp norm
implies convergence in probability by Markov’s Inequality. Furthermore, by (3) from Prop-

erty B.4.3, we have if Xn
Lp

→ X then limn→∞ E[|Xn|p] → E[|X|p]. We note that the
expectation operator ∥·∥Lp := E[|·|] is a norm in the functional analytic sense when we do
not make a distinction between random variables equal almost surely (see Appendix B).

Before we continue to the weakest convergence of interest for us, we introduce distri-
bution functions and some of their properties.

Definition 2.1.13. A real-valued function F defined on R is a distribution function
for R if it is increasing and right-continuous such that

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

Proposition 2.1.14. Let Q be a probability measure on (R,B), then F (x) = Q(−∞, x] is
a distribution function.

Proof. By monotonicity of Q, we have that F is increasing. Furthermore, since Q is
complete we have for (∞, xn] ↓ (∞, x] that limn→∞Q (∩n

i=1(∞, xn]) = Q((∞, x]) for xn ↓ x.

9



Similarly, by continuity of Q, and xn ↓ −∞ and xn ↑ ∞, we have limx→−∞ F (x) = 0 and
limx→∞ F (x) = 1 respectively.

We also observe a fact about the distribution function with respect to a non-atomic
probability space.

Observation 2.1.15. The distribution function FX is continuous if and only if P(x) = 0
for any x ∈ R

Returning to convergence, the weakest notion of convergence of our interest is conver-
gence in distribution.

Definition 2.1.16 (Convergence in Distribution). A sequence of random variables (Xn)n∈N

is said to converge in distribution to a random variable X, denoted Xn
d→ X as n → ∞

if

lim
n→∞

P(Xn ≤ x) = P(X ≤ x) for any x such that P(X = x) = 0.

In view of Proposition 2.1.14, we have equivalently that Xn
d→ X if limn→∞ Fn(x) = F (x)

for every x ∈ R at which F is continuous. Here, Fn and F are distribution functions for
Xn and X respectively.

Perhaps surprisingly, even if a sequence of random variables Xn
a.s.→ X, it may be the

case that neither Xn
L1

→ X nor E[Xn] → E[X] may hold. For a sufficient condition when
that occurs, we turn to Lebesgue’s Dominated Convergence Theorem.

Theorem 2.1.17 (Lebesgue’s Dominated Convergence Theorem). If Xn → X almost
surely, and there is an random variable Y ∈ L1 such that |Xn| ≤ Y , then X ∈ L1,
E[Xn] → E[X] and E[|Xn −X|] → 0.

We will show in Section 2.3 that uniform integrability provides a more general sufficient
condition giving rise to an improved dominated convergence theorem. In particular, we
will consider the case of E[|Φ(k0 |Xn|)− Φ(k0 |X|)|] → 0 for a particular convex function
Φ and a constant k0 > 0.

2.2 Some Functional Analysis and Scheffe’s Lemma

Functional Analysis deals with spaces that have a distance (norm) between two objects
in the space. The Riesz-Fisher Theorem shows not only is the familiar Lp space with the

10



expectation operator acting as our distance function a functional space, but also it is a
complete linear space (Theorem B.4.1).

Before we get to that stage, lets precisely state our definition for complete linear spaces.

Definition 2.2.1 (Banach Space). A Banach Space is a normed linear space which is
also complete. That is,

If (xn) is a Cauchy sequence in a normed linear space X , then there is at least one x
in X such that xn → x. Banach spaces are also called complete normed spaces.

In general, a normed linear space is not a Banach Space. That is a normed linear
space may be “missing” some element x such that xn → x. Because Cauchy sequences
are the sequences whose terms grow arbitrarily closer together, the normed linear space
where all Cauchy sequences converge are the spaces that are not “missing” any numbers.
Furthermore, any divergent sequence is “truly” divergent, that is, there is no bigger normed
linear space which makes it convergent.

Since in a normed linear space each convergent sequence is Cauchy, we have the following
Cauchy convergence criterion:

Theorem 2.2.2 (Cauchy Convergence Criterion). In a Banach space, a sequence is con-
vergent if and only it is Cauchy.

Corollary 2.2.3. If Xn
Lp

→ X for 1 ≤ p < ∞, then there is a subsequence (Xnk
) such that

Xnk

a.s.→ X.

In view of the Cauchy convergence criterion and Riesz-Fisher’s theorem, the proof of the
above is clear, since every convergent sequence is a Cauchy sequence and by Theorem B.4.1,
every Cauchy sequence contains an almost everywhere convergence subsequence with limit
equal to the norm limit of the Cauchy sequence.

Theorem 2.2.4 (Scheffe’s Lemma). For the normed space L1, suppose there is a sequence

(Xn) and (X) both in L1 such that Xn
a.s→ X. Then ∥Xn∥ → ∥X∥, if and only if Xn

∥·∥L1→ X.

Proof. The “only if” part is straight forward. Suppose, lim
n→∞

∥Xn −X∥ = 0. we have,∣∣∥Xn∥ − ∥X∥
∣∣ = ∣∣∣E[|Xn|]− E[|X|]

∣∣∣ = ∣∣∣E [∣∣Xn

∣∣− |X|
]∣∣∣

≤ E
[∣∣∣∣∣Xn

∣∣− ∣∣X∣∣∣∣∣] by (3) in Property B.4.3

≤ E [|Xn −X|] by reverse triangle inequality

= ∥Xn −X∥ → 0 as n → ∞.
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Hence, ∥Xn∥ → ∥X∥.
For “if”, suppose ∥Xn∥ → ∥X∥. Fix n and partition Ω = {ω : Xn(ω)X(ω) ≥ 0} ∩ {ω :

Xn(ω)X(ω) < 0}. Then,

E[|Xn −X|] = E[|Xn −X|1{XnX≥0}] + E[|Xn −X|1{XnX<0}].

On {XnX ≥ 0}, either Xn and X are both nonpositive or are both nonnegative. In this
case, E[|Xn −X|1{XnX≥0}] = E

[∣∣|Xn| − |X|
∣∣1{XnX≥0}

]
. On {XnX < 0}, Xn and X have

opposite signs, and hence E[|Xn −X|1{XnX<0}] = E
[∣∣|Xn|+ |X|

∣∣1{XnX<0}
]
.

Thus,

E[|Xn −X|] = E
[∣∣|Xn| − |X|

∣∣1{XnX≥0}
]
+ E

[∣∣|Xn|+ |X|
∣∣1{XnX<0}

]
≤ E

[∣∣|Xn| − |X|
∣∣1{XnX≥0}

]
+ E

[
(
∣∣|Xn| − |X|

∣∣+ 2 |X|)1{XnX<0}
]

= E
[∣∣|Xn| − |X|

∣∣]+ 2E[|X|1{XnX<0}]

Now, applying the fact that |x| = x+ + x− = x+ − x− + 2x− and hence,

E[|Xn −X|] ≤ E[|Xn| − |X|] + 2E[(|Xn| − |X|)−] + 2E[|X|1{XnX<0}].

By sending n → ∞ and assumption, we have E[|Xn| − |X|] = 0. By Xn
a.s.→ X and

noticing that (1) (|Xn| − |X|)− ≤ |X| regardless of whether |Xn| ≥ |X| or |Xn| < |X|,
(2) X ∈ L1 and (3) {XnX < 0} ↓ ∅, and applying dominating convergence theorem as in
Theorem 2.1.17, we finally have,

E[|Xn −X|] → 0.

2.3 Uniform Integrability

At last in this section we reach the refinement of dominating convergence theorem that we
stated earlier. First, we define Uniform Integrability.

Definition 2.3.1 (Uniform Integrability). A non-empty family X ⊂ L0 of random vari-
ables is said to be uniformly integrable (UI) if

lim
n→∞

(
sup
X∈X

E
[
|X|1{|X|≥n}

])
= 0.

That is, for integrable random variables, the far tails contribute very little to the expec-
tation.

12



Proposition 2.3.2.

lim
n→∞

(
E
[
|X|1{|X|≥n}

])
= 0 if and only if X ∈ L1

Proof. Suppose X ∈ L1, that is, E[|X|] < ∞.

Now,

nP{|X| ≥ n} = E[n1{|X|≥n}] ≤ E[|X|1{|X|≥n}] ≤ E[|X|] for every n ∈ N.

Hence,

P{|X| = ∞} = lim
n→∞

P{|X| ≥ n} ≤ lim
n→∞

1

n
E[|X|] = 0.

Since we are taking an integral over a null set, P{|X| = ∞} = 0, we have,

lim
n→∞

E[1{|X|≥n} |X|] = lim
n→∞

∫
{|X|≥n}

|X| dP = 0.

To show the other direction, toward a contradiction, suppose lim
n→∞

(
E
[
|X|1{|X|≥n}

])
= 0

and X ̸∈ L1.

Notice that,

E[|X|] = E[|X|1{|X|≥n}] + E[|X|1{|X|<n}] for every n

≤ E[|X|1{|X|≥n}] + nP{|X| ≤ n}
≤ E[|X|1{|X|≥n}] + n0 for some n0 ∈ R.

Taking limits over n, we have +∞ = E[|X|] ≤ n0, which is a contradiction. Thus, we
have lim

n→∞

(
E
[
|X|1{|X|≥n}

])
= 0 if and only if X ∈ L1.

Some immediate observations from Definition 2.3.1 on the way to a Criterion for Uni-
form Integrability :

Observation 2.3.3 (Uniform Integrability).

1. The second condition of Lebesgue convergence from Theorem 2.1.17 implies uniform
integrability of (Xn).

Proof. Notice, E
[
supX∈X |X|1{|X|≥k}

]
≤ E

[
Y 1{|Y |≥k}

]
by the monotonicity of

expectation. By Proposition 2.3.2, the proof follows.
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2. Since P(Ω) = 1 and when P a complete measure, any X ∈ L1 is trivially uniformly
integrable.

Proof. Recall that for X ∈ L1, we have that |X| is finite a.e. Set Xn := 1{|X|≥n} |X|,
then we clearly have Xn ≤ |X| ≤ M0 a.e., and the proof follows from the first
observation above.

3. X is a class of uniformly integrable random variables, if and only if

(i) supX∈X E[|X|] < +∞, and

(ii) for every ε > 0 there exists δ > 0 such that, for every A ∈ F such that P(A) < δ
and every X ∈ X , we have E [1A |X|] < ε.

Proof. Fix X ∈ X , such that X is a class of uniformly integrable random variables.
Indeed, E[|X|] = E

[
|X|1{|X|≥k}

]
+E

[
|X|1{|X|<k}

]
≤ E

[
|X|1{|X|≥k}

]
+k0. And again

by Proposition 2.3.2, it follows that supX∈X E[|X|] < +∞.

Now,

E[|X|1A] = E[|X|1A∩{|X|≥k}] + E[|X|1A∩{|X|<k}]

≤ E[|X|1A∩{|X|≥k}] + k0P(A).

For sufficiently large k, E[|Xn|1A∩{|Xn|≥k}] ≤ E[|Xn|1{|Xn|≥k}] < ε
2
. By putting

P(A) < δ = ε
2k0

, we have the desired inequality, E[|Xn|1A] ≤ ε.

For the other direction, suppose supX∈X E[|X|] < +∞ and limP(A)→0 E[|X|1A] = 0
holds for some collection of random variables X and put M := supX∈X E[|X|]. By
Chebshev, we have:

P({|X| ≥ n}) ≤ 1

n
E[|X|] ≤ M

n

For large enough n from (ii), we can put M
n
< δ = ε, then supX∈X E[|X|1{|X|≥n}] ≤

supX∈X E[|X|] < ε as desired.

Theorem 2.3.4 (Uniform Integrability Criterion). For a sequence (Xn) ∈ L1 such that
Xn

a.s.→ X, the following are equivalent:

1. Each Xn is uniformly integrable,

2. X ∈ L1 and Xn

∥·∥L1→ X,
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3. ∥Xn∥ → ∥X∥.

Any of the above conditions imply E[Xn] → E[X].

The reader can find the proof of the above in [16]. We can weaken the above as follows:

Theorem 2.3.5 (Vitali’s Convergence Theorem). For a class of uniformly integrable ran-

dom variables,(Xn) ∈ X , Xn
P→ X if and only if X ∈ L1 and Xn

∥·∥L1→ X.

Indeed, together Theorems 2.3.4 and 2.3.5 are necessary and sufficient conditions for
L1 convergence. The above is a Generalization of Lebesgue’s Dominated Convergence
Theorem.

Proof. The necessary condition holds in general by Chebychev that for a fixed p ≥ 1,
we have P({|Xn −X|p} > ε) ≤ 1

ε
E[|Xn −X|p]. For the sufficient condition, consider that

if Xn
P→ X, there exists a subsequence Xnk

a.s.→ X. By an application of Fatou’s Lemma as
in Corollary 2.1.6, we have

E[|X|] = E[lim inf
k→∞

|Xnk
|] ≤ lim inf

k→∞
E[|Xnk

|] ≤ sup
Xn∈X

E[|Xn|] < ∞,

since each X is a uniformly integrable set and thus bounded in L1. Hence X ∈ L1 and
thus {|Xn −X|} is also a uniformly integrable set by Observation 2.3.3.

Now to show convergence in norm, notice that since there exists a subsequence Xkn
a.s.→

X, we have a further subsequence Xn′
k

P→ X. Hence there exists another further sub-

sequence Xn′′
k

a.s.→ X. By the first part of the sufficient condition, we have Xn′′
k

∥·∥L1→ X.
But notice that the limit X does not depend on the subsequence. Hence by reductio ad
absurdum, we have that Xn itself converges to X in norm.

2.4 Orders and Lattices

We shall use this section to refine some of the notions of convergence introduced in the
previous sections. As before, we first need to get some preliminaries out of the way.

Definition 2.4.1 (Lattice). A partially ordered set (X ,≤) is a lattice if each pair of ele-
ments x, y ∈ X has a supremum (or least upper bound) and an infimum (or greatest lower
bound).

15



For a lattice X , if X ∈ X , then |X| ∈ X , since |X| = sup{X, 0} + sup{−X, 0}. An
ordered vector space that is also a lattice is called a Riesz space or a vector lattice. A norm
∥·∥ is called a lattice norm if:

|x| ≤ |y| then ∥x∥ ≤ ∥y∥ for each x, y ∈ X .

In particular, a Banach lattice is a Banach space endowed with a partial ordering such
that (X ,≤) is a vector lattice and the the norm ∥·∥ is a lattice norm.

Definition 2.4.2 (Order Bounded Sets). A subset A of L0 is order bounded from
above if there is an element u ∈ A that dominates each element of A. Similary, sets
order bounded from below if there is an element u ∈ A that is dominated by every
element of A. Notice that a subset A is order bounded from above (below) if and only if
−A is order bounded from below (above). A subset A is order bounded if A is both order
bounded from above and from below.

Definition 2.4.3 (Order Convergence). A sequence of random variables (Xn) ∈ A ⊂ L0 is
order convergent to X, denoted Xn

o→ X, if there is a sequence (Zn) decreasing almost
everywhere pointwise to 0, i.e., Zn ↓ 0, such that |Xn −X| ≤ Zn for every n ∈ N.

Lemma 2.4.4 (Lemma 8.17 from [1]). An order bounded sequence (Xn) ∈ L1 satisfies
Xn

o→ X if and only if Xn
a.s.→ X.

Proof. Since that (Xn) is order bounded, then there is some Y that dominates each Xn.
Hence, |Xn −X| ≤ Y + |X|.

Assume Xn
a.s.→ X, Then, |Xn −X| ≤ Y + |X| ≤ 2Y almost surely and by dominated

convergence, we have X ∈ L1, and hence supm≥n |Xn −X| ∈ L1 for every n ∈ N. Putting
Zn := supm≥n |Xn −X| we have |Xn −X| ≤ Zn ↓ 0.

The other direction is rather trivial. Suppose Xn
o→ X, so there exists (Zn) ↓ 0 on the

same directed set as (Xn) such that |Xn −X| ≤ Zn. Thus |Xn(ω)−X(ω)| ≤ Zn(ω) for
every n and ω ∈ E such that P(E) = 1. That is Xn

a.s.→ X.

The reader may be interested to know that the following version of lower semicontinuity
is equivalent to the Fatou property of risk measures [8, 5, 17, 18].

Definition 2.4.5 (Order Continuity). A function ρ : L0 → R is order continuous
if Xn

o→ X implies ρ(Xn) → ρ(X). Similarly, ρ is order lower semicontinuous if
Xn

o→ X implies ρ(X) ≤ lim inf ρ(Xn).
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2.5 Skorohod’s Representation Theorem

In general, the risk manager does not know the probability structure of their random
variable to interest. Hence, they must first construct their empirical distribution as be
assured that such a distribution is a good enough approximation of the true distribution.

Once the risk manager has a method for approximating the true distribution, they can
create their random variables of interest thusly,

Proposition 2.5.1. Let F be a distribution function. Then there exists a unique probability
measure Q on (R,B) such that Q((−∞, x]) = F (x). Moreover, a random variable X with
distribution function F can be constructed as follows: Let Ω = (0, 1) and let P be the
uniform distribution on Ω and define

X(ω) = inf{x : F (x) ≥ ω}, 0 < ω < 1.

The inverse in the above proposition is the quantile function and is used in the calcu-
lation of Value at Risk (VaR) and Expected Shortfall (ES), wherein the former is the loss
in the top α-th level of the empirical distribution and the latter is the expectation given
losses are above α-th level from the empirical distribution.

Before we continue the proof of the above proposition, we make some observations and
state a theorem.

Observation 2.5.2. Some things to note from our generalized inverse X(ω) = inf{x :
F (x) ≥ ω}, 0 < ω < 1, if F is continuous, then the following are true:

1. X(ω) is strictly increasing,

Proof. Toward contradiction, suppose that X(ω) is not strictly increasing. Then,
for some α < β, we have X(α) = X(β) = x ∈ R. By definition of X, we have
F (x − 1

n
) ≤ α < β ≤ F (x − 1

n
) for any n ∈ N. By taking limits over n, we have

F (x) < F (x), a contradiction.

2. F (X(ω)) ≥ ω for every ω ∈ [0, 1].

Proof. Assume X(ω) ∈ R. We can then find some sequence (xn) such that xn ≥ F
and xn → X(ω). By taking limits and using the right continuity of F we get that
F (X(ω)) ≥ ω.

We also note the following well known interplay between F,X(ω) and U(0, 1) [37].
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Theorem 2.5.3. Let F be a cumulative distribution and U(0, 1) the standard uniform
distribution. Then,

1. P(X(F (X)) = X) = 1 if X has distribution F ,

2. If U has distribution U(0, 1), then X(U) has distribution F ,

3. If F is continuous and X has distribution F , then F (X) has distribution U(0, 1).

We now return to the initial Proposition 2.5.1.

Proof. We state the proof directly from [16]. From Lemma A.1.3, notice that X is a
measurable function. Let Q be the probability function of X. We want to show F (y) =
P({ω : X(ω) ≤ y}) is the distribution function of Q. Further notice that X is an increasing
function on (0, 1) and the event {ω : X(ω) ≤ y} is bounded below by 0 and bounded above
by sup{ω : X(ω) ≤ y}.

By the definition of X and right continuity of F , we have F (X(ω)) ≥ ω. Hence for
ω ∈ {ω : X(ω) ≤ y} we have F (y) ≥ F (X(ω)) ≥ ω. Hence, F (y) is an upper bound for
{ω : X(ω) ≤ y}.

On the other hand, F (y) ∈ {ω : X(ω) ≤ y}, since X(F (y)) ≤ y. Hence, F (y) =
sup{ω : X(ω) ≤ y}.

From this empirical distribution, the risk manager can create a sequence of random vari-
ables and their respective probability measures from their empirical distribution. A risk
manager would surely want to know the asymptotic properties these random variables. In
particular, for large enough sample size, the risk manager wants to know if the random
variable induced by the empirical distribution (Xn) is a good enough estimator for the ran-
dom variable of interest (X). The Skorokhod’s Representation shows that such a procedure
produces a consistent estimator. Thus, we give a version of Skorokhod’s representation,

Proposition 2.5.4 (Skorokhod’s Representation). Let Q and a sequence (Qn) be proba-
bility measures on R and suppose that Qn → Q as n → ∞. Then there exists a probability
space (Ω,F ,P) and R-valued random variables X and a sequence (Xn) defined on Ω, such
that the distributions of X and Xn are Q and Qn, respectively, and Xn → X almost
everywhere as n → ∞.

Proof. We state the proof for the above directly from [16]. Let F and Fn be the
distribution functions corresponding to Q and Qn, respectively. Let Ω = (0, 1), F its Borel
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field and P as the Lebesgue measure on (Ω,F). For ω ∈ Ω, set

X(ω) = inf {x : F (x) ≥ ω} ,
Xn(ω) = inf {x : Fn(x) ≥ ω}

Fix ω and δ > 0 such that X(ω)− δ is a point at which F is continuous. Then,

F (X(ω)− δ) < ω and hence, Fn(X(ω)− δ) < ω,

for large enough n. Furthermore, for such n, we have Xn(ω) ≥ X(ω)− δ. Thus,

lim inf
n→∞

Xn(ω) ≥ X(ω)− δ.

Now, let δ ↓ 0 to conclude that

lim inf
n→∞

Xn(ω) ≥ X(ω)

Notice that X is monotone and has countably many points of discontinuity. Thus for
almost every ω, X is continuous. Fix ω such that X(ω) is continuous, fix ϵ > 0 and fix
δ > 0 such that X(ω + ϵ) + δ is a point at which F is continuous. Then,

F (X(ω + ϵ) + δ) ≥ ω + ϵ.

For every large enough n, we have

Fn(X(ω + ϵ) + δ) ≥ ω,

hence,

X(ω) ≤ X(ω + ϵ) + δ.

Thus,

lim sup
n→∞

Xn(ω) ≤ X(ω + ϵ) + δ.

Now, let δ ↓ 0 and ϵ ↓ 0 to conclude that that

lim sup
n→∞

Xn(ω) ≤ X(ω).
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That is, Xn → X almost surely.

Before we continue, let us re-evaluate what the above theorem allows us to do. It allows
one to replace a sequence of random variables by a new sequence of random variables defined
by the left continuous inverse of the empirical distributions from realizations the previous
random variables. Hence, when using expectation as a risk measure, we can approximate
the true risk statistic by taking many realizations of the risk measure.

However, our focus is on convex risk. We are left with the question, can we use the same
approach when our risk measure is a convex functional? To get to this answer, we must
work on generalization of the usual Lp spaces and see if we can extend this representation
to that space.
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Chapter 3

Risk measures on Orlicz spaces

3.1 Orlicz Spaces and the Orlicz Heart

The Orlicz space generalizes the notion of the Lp space. In particular, we consider an
Orlicz function which generalizes |x|p as follows,

Definition 3.1.1 (Young’s Function). A Young’s function is a function

Φ : [0,∞) → [0,∞]

satisfying:

1. Φ(0) = 0.

2. Φ is left-continuous: limu↑x Φ(u) = Φ(x).

3. Φ is increasing: if u1 ≤ u2 then Φ(u1) ≤ Φ(u2).

4. Φ is convex: Φ(au1 + (1− a)u2) ≤ aΦ(u1) + Φ((1− a)u2) for 0 ≤ a ≤ 1.

5. Φ is nontrivial: Φ(u) > 0 for some u > 0 and Φ(u) < ∞ for some u > 0.

We remark that Φ(x) has only one discontinuity (the point at which it jumps to ∞) and

if X is a random variable (i.e., a measurable function X : R → R), then Φ(X) : R → R+

is measurable for (Ω,F) by Observations A.2.4 and A.3.2.

We some useful facts about Young functions are as follows,

21



Fact 3.1.2.

1. Φ achieves its minimum at 0,

2. Since Φ is increasing, it is differential almost everywhere.

3. Φ is finite if its effective domain, dom (Φ) := {x ∈ R+ such that Φ(x) < ∞}, is R+.

4. The Young’s function can equivalently be written as

Φ(x) =

∫ |x|

0

ϕ(x)dx

where ϕ is a positive right continuous nondecreasing function such that ϕ(0) = 0 and
limx→∞ ϕ(x) = ∞.

Example 3.1.3 (Young’s Functions). Some useful Young’s functions on [0,∞] are:

1. exp(x),

2. |x|p for p ≥ 1, and − |x|p for 0 ≤ p < 1,

3. e|x| − |x| − 1

4. − lnx,

5. e|x|
δ − 1 for δ > 1. In particular, the derivative of this function has property (4)

in Fact 3.1.2 [31] .

Definition 3.1.4 (Orlicz Modular). On a probability space (Ω,F ,P), the functional ρ :
L0 → [0,∞] is the Orlicz Modular for Young function Φ defined by

MΦ(X) = E [Φ(|X|)] :=
∫
Ω

Φ(X(ω))P(dω)

The Young’s class of Φ is the set LΦ
M := LΦ

M(Ω,F ,P) consisting of all random variables
such that MΦ(X) is finite [21, 12].

Proposition 3.1.5. The Orlicz modular is convex.
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Proof. Indeed for 0 ≤ α ≤ 1 we have,

MΦ(αX + (1− α)Y ) = E[Φ(|αX + (1− α)Y |)] ≤ E[Φ(α |X|+ (1− α) |Y |)]
≤ αE[Φ(|X|)] + (1− α)E[Φ(|Y |)] = αMΦ(X) + (1− α)MΦ(Y )

Definition 3.1.6 (Orlicz Spaces, The Orlicz Heart and the Luxemburg Norm). For λ > 0,
define LΦ

λ (Ω,F , µ) :=
{
X : MΦ

(
X
λ

)
< ∞

}
for random variable X.

1. Orlicz Spaces are given by

LΦ = LΦ(Ω,F , µ) :=
⋃
λ>0

LΦ
λ (Ω,F , µ)

2. The Orlicz Heart is given by

HΦ = HΦ(Ω,F , µ) :=
⋂
λ>0

LΦ
λ (Ω,F , µ)

That is, HΦ is the set of finite elements of LΦ.

3. The Luxembourg Norm for a random variable X is ∥X∥Φ := inf
{
λ > 0 : MΦ

(∣∣X
λ

∣∣) ≤ 1
}
.

4. Both spaces, (LΦ, ∥·∥Φ) and (HΦ, ∥·∥Φ) are Banach Spaces.

That is, Orlicz spaces are the space of random variables such that Mϕ

(
X
λ

)
is finite for

some λ > 0, and the heart of the Orlicz space is the space of random variables such that
Mϕ

(
X
λ

)
is finite for every λ > 0. The obvious inclusions are HΦ ⊂ LΦ

M ⊂ LΦ.

We have the further inclusion LΦ ⊂ L1. Indeed, for any convex function Φ, we have
the property Φ(x) ≥ Φ(0)+Φ′(0)x. That is, Φ(x) sits above any of its tangent lines. Then
for any X ∈ LΦ and the linearity and monotonicity of the expectation, we have,

Φ(0) + Φ′(0)E[|X|] ≤ E[Φ(|X|)] < ∞.

We further note that LΦ = HΦ if and only if Φ holds the ∆2 condition:

there exist C, x0 > 0 such that Φ(2x) ≤ CΦ(x) for all x ≥ x0.
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Indeed, the ∆2 condition is satisfied for Φ(x) = |x|p for p ∈ [1,∞), which corresponds
to the familiar Lp space. Although p = ∞ is not technically an Orlicz space, one can think
of L∞ as the limiting case of |x|p.

Returning to our discussion of Young’s functions, with each function Φ as in Def-
inition 3.1.1, there is another associated convex function Ψ, called the complementary
function, having similar properties which is defined by

Ψ(y) := sup{x |y| − Φ(x) : x ≥ 0}, y ∈ R.

Indeed, from the above, we have

1. Ψ(0) = 0,

2. Ψ is left continuous,

3. Ψ is increasing,

4. Ψ is convex,

Furthermore, the pair (Φ,Ψ) satisfies Young’s Inequality : xy ≤ Φ(x) + Ψ(y) for any
x, y ∈ R.

Proposition 3.1.7. Fix a probability space (Ω,F ,P). For complementary pair of Young’s
functions (Φ,Ψ) and their corresponding Orlicz spaces (LΦ,LΨ), if X is a random variable
such that XY ∈ L1 for every Y ∈ LΨ, then X ∈ LΦ.

We end our discussion of the Orlicz space and Orlicz heart with the following useful
proposition from [12]:

Proposition 3.1.8 (2.1.10 Stopping Times and Directed Processes).

1. ∥Xn −X∥Φ → 0 if and only if MΦ (k(X −Xn)) → 0 any k > 0

2. ∥Xn −X∥Φ → 0, then Xn
P→ X.

The proof Proposition 3.1.8 can be found in [12]. We will freely use these properties.

Finally, we note the extension of Lemma 2.4.4 to the Orlicz space as found in [28]:

Theorem 3.1.9. For a sequence (Xn) ∈ LΦ, Xn
o→ X if and only if Xn is order bounded

and Xn
a.s.→ X.
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3.2 Convex Risk Measures, The Lebesgue Property

and Statistically Consistency

3.2.1 The Basics

In the following X denotes a fixed subspace of L1(Ω,F ,P) unless otherwise stated.

Definition 3.2.1 (Risk Measures). The mapping ρ : X 7→ (−∞,∞] a monetary risk
measure on X if it has the following three properties:

(F) Finiteness at 0: ρ(0) ∈ R

(M) Monotonicity: ρ(X) ≥ ρ(Y ) for all X, Y ∈ X such that X ≤ Y

(T) Translation property: ρ(X +m) = ρ(X)−m for all X ∈ X and m ∈ R

We call a monetary risk measure convex if it also satisfies

(C) Convexity: ρ(λX+(1−λ)Y ) ≤ λρ(X)+(1−λ)ρ(Y ) for all X, Y ∈ X and λ ∈ (0, 1)

The description for each property is as follows:

(F) This is clear, as the risk of holding nothing is nothing.

(M) The value ρ(X) is understood to be the capital requirement of holding risky position
X. In particular, we have that the capital requirement for X should be greater than
Y if it is clear that the payoff of position X is smaller than risky position Y almost
surely.

(T) The capital requirement for the convex combination of two risky positions is bounded
above the the convex combination of the separate capital requirements.

(C) Adding an amount of money to a risky position reduces the capital requirement by
that amount of money.

A convex monetary risk measure is called coherent if it further fulfills:

(P) Positive homogeneity: ρ(λX) = λρ(X) for all X ∈ X and λ ∈ R+
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If (P) holds, then the capital requirements scale linearly when net risky positions are
multiplied with non-negative constants and (C) is equivalent to

(S) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ X .

Definition 3.2.2. The acceptance set of a risk measure with properties (F), (M) and (T)
ρ : X → (−∞,∞] is

C := {X ∈ X : ρ(X) ≤ 0}

Furthermore, we can represent the previously defined risk measure as

ρ(X) = inf {m ∈ R : ρ(X +m) ≤ 0}

That is, ρ is the minimum capital requirement to “move” a risky position into the accep-
tance set.

Definition 3.2.3. We say that a map ρ : X 7→ (−∞,∞] is law invariant if ρ(X) = ρ(Y )
whenever X, Y ∈ X have the same probability law. That is P(X ∈ B) = P(Y ∈ B) for any
B ∈ B(R).

We now define the Lebesgue Property for a functional ρ and discuss some of its proper-
ties.

Definition 3.2.4 (Lebesgue Property). A functional ρ : X → (−∞,∞] has the Lebesgue
property if

ρ(Xn) → ρ(X)

Whenever (Xn) ∈ X such that Xn
a.s−→ X and |Xn| ≤ Z for some Z ∈ X .

In proving the next important result, we shall rely on the following version of a lemma
found in [1] and stated in its entirety in A.3.6.

Lemma 3.2.5. Let ρ : X → R be convex and positively homogeneous, then if ρ is contin-
uous at 0 it is continuous everywhere.

Proof. Let Xn
∥·∥→ X, then Xn − X

∥·∥→ 0 ⇒ ρ(Xn − X) → 0. We want to show that
ρ(Xn) → ρ(X). By homogeneity and convexity of ρ (notice that a homogeneous function
is convex if and only if it is subadditive) we have,

ρ(Xn) = ρ(Xn −X +X) ≤ ρ(Xn −X) + ρ(X)
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and similarly,
−ρ(X) = −ρ(X −Xn +Xn) ≥ ρ(Xn −X)− ρ(Xn).

And hence, |ρ(Xn)− ρ(X)| ≤ ρ(Xn −X). Taking n → ∞, we have,

lim
n→∞

ρ(Xn) = ρ(X).

Theorem 3.2.6. Any convex monotone increasing functional ρ : X → R on a Banach
lattice X is continuous.

Proof. In view of Theorem A.3.6 and Lemma 3.2.5, it suffices to show that ρ is continuous
at 0.

Pick a sequence in X , say (Xn) such that Xn
∥·∥→ 0 and suppose ρ(0) = 0 (otherwise,

take a linear transform to set ρ̃ := ρ− ρ(0)). Toward a contradiction, take a subsequence
(Xnk

)k∈N such that ρ(Xnk
) that is not convergent to 0, that is ρ(Xnk

) ≥ ε for any k ∈ N.

Now, by supposition, we have ∥Xnk
∥ ≤ 1

k2k
for any k ∈ N.

Putting Ym :=
∑m

i=1 i |Xni
|, we that that,

Ym ↑ Y :=
∞∑
i=1

i |Xni
| ∈ X ,

since X is a Banach space and
∑m

i=1 ∥i |Xni
|∥ ≤

∑m
i=1

1
2i
∈ R.

Finally, by monotonicity and convexity of ρ, we have

|ρ(Xnk
)| ≤ ρ(|Xnk

|)

≤ ρ

(
1

k
k |Xnk

|+
(
1− 1

k

)
0

)
≤ 1

k
ρ(k |Xnk

|) +
(
1− 1

k

)
ρ(0) ≤ 1

k
ρ(Ym) ≤

1

k
ρ(Y ) ∈ R

Taking limits over k → ∞, we have ρ(Xnk
) → 0, a contradiction.

Corollary 3.2.7. Any convex monotone increasing functional ρ : HΦ → R has the
Lebesgue property.
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Proof. Let (Xn) ⊆ HΦ and X ∈ X such that Xn
o−→ X. Then there exists Y ∈ HΦ

such that |Xn| ≤ Y . Fix some k > 0, then MΦ(kY ) < ∞ and hence by the dominated
convergence theorem it follows that,

MΦ(2kXn) → MΦ(2kX).

Since Φ is convex and nondecreasing, we have,

0 ≤ MΦ(k(Xn −X)) ≤ 1

2

(
MΦ(2kXn) +MΦ(2kX)

)
.

Thus is easy to see that Φ(k(Xn−X)) is uniformly integrable. By the continuity of Φ we
have Φ(k(Xn−X))

a.s.−−→ 0. Therefore Vitali’s convergnce theorem ensures that MΦ(k(Xn−
X)) → 0. By Proposition 3.1.8 it follows that Xn

∥·∥−→ X. In view of Theorem 3.2.6 we get
that ρ(Xn) → ρ(X) and thus ρ has the Lebesgue property.

3.2.2 Statistically Consistency

In this section we closely follow the notations from [19].

In the following ρ : LΦ → (−∞,∞] will denote a law-invariant risk measure. Let us
denote by M(LΦ) := {P ◦X−1 : X ∈ LΦ} the class of Borel probability measures on R
that arise as the distribution of someX ∈ LΦ. The risk functionalRρ : M(LΦ) → (−∞,∞]
associated with ρ is defined via the following formula.

Rρ(P ◦X−1) = ρ(X), X ∈ LΦ.

Let (Xn) be a sequence of i.i.d. We denote by

F̂n =
1

n

n∑
i=1

δXi

the empirical distribution of X1, ..., Xn.

Definition 3.2.8. We say that ρ is statistical consistent if for any sequence (Xn) of i.i.d.
with Xn ∼ X ∈ LΦ we have that

Rρ(F̂n)
a.s.−−→ Rρ(P ◦X−1)
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Before we prove our main result, we need the following intermediate steps.

Lemma 3.2.9 (A Skorokhod Representation on Orlicz Spaces). Let (µn) be a sequence
in M(LΦ) such that µn → µ ∈ M(LΦ) and

∫
Φ(k|x|)dµn →

∫
Φ(k|x|)dµ < ∞ for some

k > 0. Then there exists a sequence (Xn) and X in LΦ such that Xn ∼ µn, X ∼ µ and

Xn
a.s.−−→ X; Φ(k|Xn|)

∥·∥L1−−−→ Φ(k|X|).

Proof. By the standard Skorohod representation theorem we may find random variables
Xn and X in LΦ such that Xn ∼ µn, X ∼ µ and Xn

a.s.−−→ X. In view of the continuity of
Φ we get that Φ(k|Xn|)

a.s.−−→ Φ(k|X|). We also have

E[Φ(k|Xn|)] =
∫

Φ(k|x|)dµn →
∫

Φ(k|x|)dµ = E[Φ(k|X|)].

Thus by Theorem 2.2.4, we have Φ(k|Xn|)
∥·∥L1−−−→ Φ(k|X|).

Lemma 3.2.10. Let (Xn) be a sequence L1 such that Xn
||·||1−−→ X, then the exists a subse-

quence (Xkn) that is order bounded in L1.

Proof. Recall, for Xn ∈ L1 we have |Xn| is finite a.s. Now since ||Xn − X|| → 0, by
Theorem B.4.1, there exists a subseqence Xnk

a.s.−−→ X. Putting Zk := supm≥k |Xnk
−X|,

we have |Xnk
−X| ≤ Zk ↓ 0, a.s., the proof follows.

Now we are at the crux of the matter. We answer the question posed at the end of
Section 2.5. To be explicit, we show that a risk manager can use realizations of a convex
risk and be assured that the mean of sure a risk will be consistent to the true value of the
convex risk.

Theorem 3.2.11. Any ρ : LΦ → (−∞,∞] with the Lebesgue property is statistically
consistent.

Proof. Let (Xn) a sequence of i.i.d. with Xn ∼ X ∈ LΦ, F̂n be the corresponding
empirical distribution and k0 > 0 such that E[Φ(k0|X|) < ∞. By the Law of Large
numbers and the Glivenko-Cantelli theorem there exists a set Ω0 with P(Ω0) = 1 such that∫

Φ(k0 |x|)F̂ ω
n (dx) →

∫
Φ(k0 |x|)(P ◦X−1)(dx) < ∞ (3.1)
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and

F̂ ω
n → P ◦X−1 (3.2)

for all ω ∈ Ω0. For the following we fix ω0 ∈ Ω0. We claim thatRρ(F̂
ω0
n ) → Rρ(P◦X−1).

Indeed, suppose that the claim is false, then we can find ϵ > 0 and a subsequence of F̂ ω0
kn

of F̂ ω0
kn

such that

|Rρ(F̂
ω0
kn
)−Rρ(P ◦X−1)| > ϵ ∀ n ∈ N (3.3)

By Eq. (3.1), Eq. (3.2) and Lemma Lemma 3.2.9 there exists a sequence Xn in LΦ and
X0 ∈ LΦ such that

Xn ∼ F̂ ω0
kn
, X0 ∼ P ◦X−1 and

Xn
a.s.−−→ X; Φ(k0|Xn|)

∥·∥L1−−−→ Φ(k0|X0|).

In view of Lemma 3.2.10 and by passing to a subsequence of (Xn) we have

E[sup
n
{Φ(k0 |Xn|)}] < ∞.

By monotonicity and almost sure continuity of Φ, we get that

E[Φ(sup
n
{k0 |Xn|})] = E[sup

n
{Φ(k0 |Xn|)}] < ∞.

That is sup{Xn} ∈ LΦ. Since supn{Xn} ∈ LΦ and Xn
a.s.−−→ X by the Lebesgue property

of ρ we get that

ρ(Xn) = Rρ(F̂
ω0
kn
) → ρ(X) = Rρ(P ◦X−1).

The above contradicts Eq. (3.3) and thus ρ is statistically consistent.
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Appendix A

Measures and Measurability

A.1 Some Basics

Definition A.1.1 (Almost Everywhere/Almost Sure). Fix (Ω,F , µ) and consider P as
some property. Property P is said to hold almost everywhere (a.e) / almost surely (a.s.)
if

∃E ∈ F such that µ(Ec) = 0 and P holds for every ω ∈ E.

Definition A.1.2 (Borel σ-algebra ). The Borel σ-algebra of R, denoted B(R), is the σ-
algebra generated by the open sets in R. That is, if O denotes the collection of all open
subsets of R, then B(R) = σ(O).

Lemma A.1.3 (Tests for Measurability). For (Ω,F , µ) and f : Ω → R, f is measurable
if and only if any one of the following hold:

(i) f−1((−∞, x]) ∈ F for any x ∈ R,

(ii) f−1((−∞, x)) ∈ F for any x ∈ R,

(iii) f−1([x,∞)) ∈ F for any x ∈ R,

(iv) f−1((x,∞)) ∈ F for any x ∈ R,
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A.2 Complete Measure and Extended σ-algebras

Definition A.2.1 (Complete Measure Space). For a σ-algebra F ⊂ P(Ω) and a σ-additive

measure µ : F → R+
, the triplet (Ω,F , µ) is complete if,

For A ∈ F such that µ(A) = 0 and for any E ⊂ A we have, E ∈ F . By monotonicity
of measure µ we also have µ(E) = 0.

If a measure space (Ω,F , µ) is not complete, we can find a unique measure µ and a
σ-algebra F ⊃ F by setting F = {A ∪N : A ∈ F , N ⊂ E ∈ F , where µ(E) = 0} and by
setting µ = µ for any A ∈ F .

A complete measure space is useful in the following:

Lemma A.2.2. Fix (Ω,L, λ), where L and λ are the borel σ-algebra, Lebesgue σ-algebra
and Lebesgue measure, respectively. Suppose f : R → R is L-measurable and g : R → R
such that g = f a.e. Then g is also L-measurable.

Proof. Fix A ∈ B. Since g = f a.e., there exists E ∈ L such that λ(Ec) = 0 and
f(ω) = g(ω) for every ω ∈ E. Now,

{{ω ∈ Ω : g(ω) ∈ A} ∩ E} = {{ω ∈ Ω : g(ω) ∈ A} ∩ E} ∪ {{ω ∈ Ω : g(ω) ∈ A} ∩ Ec}
= {ω ∈ Ω : f(ω) ∈ A}︸ ︷︷ ︸

∈L

∪{{ω ∈ Ω : g(ω) ∈ A} ∩ Ec}︸ ︷︷ ︸
⊂Ec and ∈L since λ is complete

Hence, g is measurable.

Definition A.2.3. Fix (Ω,F , µ) and consider f : F → R and the extended borel σ-algebra
B := {A ∪ B : A ∈ B and B ⊂ {−∞,+∞}}. The function f is measurable if f−1(A) ∈ F
for any A ∈ B.

Observation A.2.4. For (Ω,F , µ) and f : Ω → R and g : R → R such that f is F-
measurable and g is B-measurable. denote g ◦ f : Ω → R as the composition of functions,
g(f(x)) for any x ∈ R. Then g ◦ f is measurable.

Proof. Fix A ∈ B, and notice g ◦ f−1(A) = f−1(g−1(A)). Since g−1(A) ∈ B and
f−1(B) ∈ F , we have f−1(g−1(A)) ∈ F .
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A.3 Functions

Definition A.3.1 (Continuous function). A function f : X → Y between topological
spaces is continuous if for every x ∈ X and every neighbourhood N of f(x) there is a
neighbourhood M of x such that f(M) ⊂ N

Observation A.3.2 (Almost Everywhere Continuous Functions are Measurable). Suppose
Ω is a topological space such that F ⊃ O, where F is a σ-algebra and O is a topology Ω.
For a continuous function f : Ω → R, we have that if f is almost everywhere continuous,
then f is measurable.

Definition A.3.3 (Inverse Functions). For every function f : X → Y , we can define an
inverse function f−1 : P(Y ) → P(x) by

f−1(A) = {x ∈ X : f(x) ∈ A and A ⊂ Y }

Some properties of this definition are as follows

1. For every A ⊂ Y , (f−1(A))c = f−1(Ac);

2. If A,B ⊂ Y are disjoint, so are f−1(A), f−1(B) ⊂ X

3. f−1(Y ) = X,

4. If An ⊂ Y is a sequence of subsets, then f−1(∪n∈N) = ∪n∈Nf
−1(An)

Fact A.3.4. A function f over two normed linear spaces X and Y is continuous if either
of the following hold:

1. if for each (un)n∈N ∈ X ,

If lim
n→∞

un = u then lim
n→∞

f(un) = f(u),

2. or, if for each u ∈ X and every ϵ > 0, there exists a number δ(ϵ, u) > 0 such that

If ∥v − u∥ < δ(ϵ, u) and v ∈ X then ∥f(v)− f(u)∥ < ϵ.

Definition A.3.5 (Homogeneous, Linear, Affine and Convex Functions). For function
f : X → Y between two spaces:
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f is homogeneous if

f(λx) = λf(x) for every λ ̸= 0

1. f is Linear if

f(λx+ y) = λf(x) + f(y) for every λ ∈ R and x, y ∈ X .

2. f is affine if

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y) for every λ ∈ R and x, y ∈ X .

3. f is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for any λ ∈ [0, 1] and x, y ∈ X .

Finally, we end this section with Theorem 5.43 from [1] in its entirety:

Theorem A.3.6 (Global continuity of convex functions). For a convex function f : C →
R on an open convex subset of a topological vector space, the following statements are
equivalent:

1. f is continuous on C,

2. f is upper semicontinuous on C,

3. f is bounded above on a neighborhood of each point in C,

4. f is bounded above on a neighborhood of some point in C,

5. f is continuous at some point in C
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Appendix B

Complete Linear Spaces and
Lp-Spaces

B.1 Basics

Definition B.1.1 (Linear Space). X is linear space over a field K, if X is a set equipped
with two operations, addition(+) and scalar multiplication(·) defined as follows:

The operation + has the following properties:

(i) + is commutative,

(ii) + is associative,

(iii) and X is a group.

The operation · has the following properties:

(i) · is associative,

(ii) · is distributive,

(iii) and there exists a neutral element represented by 1 in the field K

For convenience, we suppress · and simply write αx for x ∈ X and α ∈ K.

36



Unless stated otherwise, the field K is assumed to be real numbers R.

Definition B.1.2 (Linear Subspace). For a linear space X over a field K , Y ⊆ X is a
linear subspace (also called a sub-linear space) if x and y are in Y and α in K, then
αx+ y is also in Y.

Definition B.1.3 (Normed Linear Space). Consider a linear space represented by X and
a field K which will be either R or C, we say that a norm represented by N is a function
from X 7→ R+ with the following properties:

1. N(x) is nonnegative and N(x) = 0 ⇐⇒ x = 0 for any x in X (definiteness),

2. for all α in K and for any x in X, N(αx) = |α|N(x) (homogeneity),

3. for any two elements in X, say x and y, we have N(x+ y) ≤ N(x) +N(y) (Sub-
additivity).

If N(x) follows all of the above conditions, except perhaps the latter part of (1), then it
is a semi-norm.

A normed linear space is a linear space equipped with a norm as defined above. For
convenience, we represent N(x) as ∥x∥.

Definition B.1.4 (Cauchy Sequence). For a linear space X equipped with a norm ∥·∥, the
sequence (xn) is a Cauchy Sequence,

if for any ϵ > 0, there is at least one integer k0, such that ∥xj − xk∥ ≤ ϵ for any
k, j ≥ k0.

Definition B.1.5 (Complete Space). X is a complete space if every Cauchy sequence
converges in X .

Notice that a Cauchy sequence may not converge in a given space. E.g., take sequence
xn = 1

n
in the interval (0, 1). Then it is clear that xn is Cauchy, but xn converges to 0

which is not in the given space.

Proposition B.1.6. In a normed space, each convergent sequence is Cauchy.

Proof. For a convergent sequence xn in a normed linear space X , we have ∥xn − x∥ ≤ ϵ
2

for some n ≥ k0.

Then, ∥xn − xm∥ =
∥∥∥(xn−x)+ (x−xm)

∥∥∥ ≤
∥∥∥xn−x

∥∥∥+∥∥∥x−xm

∥∥∥ ≤ ϵ for n,m ≥ k0.

Theorem B.1.7. In a normed linear space X , every Cauchy sequence (xn) is convergent
if and only if (xn) has a convergent subsequence.
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B.2 Equivalence Classes

Definition B.2.1 (Equivalent modulo). For a linear subspace Y of linear space X over a
field K , we introduce a relation, (∼), between two elements of X . Two arbitrary elements
in X , say x, y, are equivalent modulo, denoted x ∼ y, if x− y is in subspace Y.

Lemma B.2.2. The relation (∼) is an equivalence relation:

x ∼ x (Reflexive). (B.1)

If x ∼ y, then y ∼ x (Symmetric). (B.2)

If x ∼ y and y ∼ z, then x ∼ z (Transitive). (B.3)

Notice we can partition the linear space X into distinct equivalence classes modulo
linear subspace Y . We denote this set of equivalence classes as X |Y stated “X mod Y”.

Definition B.2.3 (Quotient Space). For x, y in a linear space X , and a sublinear space
Y, we define the following:

1. [x] = {y ∈ X : x ∼ y} := {y ∈ X : (x − y) ∈ Y}. That is for x ∈ X , [x] represents
all the elements of y ∈ X such that the linear combination (x− y) ∈ Y.

2. We represent the Quotient Space of X modulo Y as X |Y= {[x] : x ∈ X}. That is
X |Y is the set of all equivalence classes of elements of X .

Remark B.2.4. From Definitions B.2.1 and B.2.3 it is clear that any representative from
an equivalence class can be used to denote that equivalence class. That is, for any element
z ∈ [x], [z] = [x]. Furthermore, the operations:

1. [x] + [y] = [x+ y]

2. α[x] = [αx]

are well defined.
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B.3 Using Lp and Dominated Convergence Theorem

Theorem B.3.1 (Convergence in Measure and Almost Everywhere Convergence). In a
finite measure space (Ω,F , µ), and for a sequence of measurable functions (fn), fn → f in
measure if and only if every subsequence (fnk

) → f almost everywhere.

Proof. Fix (Ω,F , µ) and suppose (fn) → f a.e. By definition, we have µ(|fn − f | >
ε) → 0 as n → ∞ for any ε > 0. So, we can fix ε = 1

2k
such that µ(|fn − f | > 1

2k
) ≤ 1

2k
for

n ≥ nk.

Now, define An :=
{
x ∈ Ω : |fnk

(x)− f(x)| > 1
2k

}
. Since µ(Ak) ≤

∑∞
k=1

1
2k

is a conver-
gent series, and Borel-Cantelli tells us that µ(lim supk→∞Ak) = 0, we have limk→∞ fnk

= f
almost everywhere.

In fact, one can strengthen the above to almost uniform convergence as in Egoroff’s
Theorem.

Definition B.3.2 (Lp spaces). Fix a measure space (Ω,F , µ), for a measurable function f

on Ω, and 1 ≤ p < ∞, define ∥f∥p :=
(∫

Ω
|f |p dµ

) 1
p . We define the Lp spaces as follows:

Lp := Lp(Ω,F , µ) =
{
f : (Ω,F) 7→ (R,B(R)) and ∥f∥p < ∞

}
A more general characterization of Theorem 2.1.17 is as follows,

Theorem B.3.3 (Lp Dominated Convergence Theorem). Fix a measure space (Ω,F , µ),
put Lp+ as the space of all measurable functions from Ω to [0,∞] and put 1 ≤ p < +∞.

If (fn) is a sequence in Lp+ such that fn → f almost everywhere, and fn ≤ g almost
everywhere, for

∫
gdµ < +∞ then

∫
fdµ < ∞ and

∫
fndµ →

∫
fdµ

B.4 Riesz-Fisher Theorem and Topologies in Lp

Theorem B.4.1 (Riesz–Fischer Theorem). Under the f ∼ g a.s. equivalence class,
(Lp, ∥·∥p) is a Banach space.
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Theorem B.4.2 (Cauchy Sequences in Lp). Suppose (fn) ∈ Lp is a Cauchy sequence, then

there exists f ∈ Lp such that fn
∥·∥→ f .

Property B.4.3 (Properties of Integrals). For (Ω,F , µ) and f, g : Ω → R such that f, g
are measurable and integrable and A,B ∈ F such that A ∩B = ∅

(1) |f | < +∞ a.e.,

(2) For measurable h : Ω → R such that |h| ≤ f , h is integrable.

(3)
∣∣∫ fdµ

∣∣ ≤ ∫ |f | dµ,

(4) If f ≥ 0, then
∫
fdµ ≥ 0,

(5) If f = g a.e., then
∫
fdµ =

∫
gdµ,

(6) If f ≥ 0 and
∫
fdµ = 0, then f = 0 a.e.,

(7) f ± g and cf are integrable for any c ∈ R,

(8)
∫
A∪B fdµ =

∫
A
fdµ+

∫
B
fdµ,

(9) 1Af is integrable and
∫
A
fdµ =

∫
1Afdµ for every A ∈ F ,

(10) If |f | ≤ c on E ∈ F , |f | = 0 on Ec and µ(E) < ∞, then f is integrable,
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[15] H. Föllmer and A. Schied. Convex risk measures. Encyclopedia of Quantitative Fi-
nance, 2010.

[16] B.E. Fristedt and L.F. Gray. A modern approach to probability theory. Springer Science
& Business Media, 2013.

[17] N. Gao, D. Leung, C. Munari, and F. Xanthos. Fatou property, representations,
and extensions of law-invariant risk measures on general orlicz spaces. Finance and
Stochastics, 22(2):395–415, 2018.

[18] E. Jouini, W. Schachermayer, and N. Touzi. Law invariant risk measures have the
fatou property. In Advances in mathematical economics, pages 49–71. Springer, 2006.
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