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1 Linear Spaces: Definition, Examples and Linear Span

1.1 Linear Spaces

Definition 1.1 (Field). A field is a set K, containing at least two elements, on which the addition and
multiplication are defined as usual, such that for each pair of elements x,y in K the elements x +y and zy
are also in K.

Aside: In general, when we speak of sets, we refer to nonempty sets unless otherwise specified.

Definition 1.2 (Linear Space). X is linear space over a field K, if X is a set equipped with two operations,
addition and scalar multiplication defined as follows:

If © and y are elements of a linear space X, then x + vy is also an element in X. The operation + has the
following properties:

+ is commutative:
rty=y+x (1)

+ is associative: for elements x,y,z in X,

e+ (y+z) =@ty +2 (2)

X s a group. That is, there exists an additive identity element, denoted 0, in X such that

O+z=x (3)

and there is an additive inverse element of x, denoted as —x, in X such that

—z+2x=0 (4)
For an element x belonging to a linear space X, a - x also belongs to X. The operation - has the following
properties:

- 18 associative:

(- B)z=a- (B ) (5)
- 1s distributive:

(a+8) z=a-x+ 8-z (6)
and

a-(z+y)=a-zt+a-y (7)

The neutral element represented by 1 is the element of the field K such that
lr==x (8)

For convenience, we suppress - and simply write ax.

The finite-dimensional linear spaces are dealt with in courses on linear algebra. These lectures emphasize
linear spaces that are not finite-dimensional.

Unless stated otherwise, the field K will be either real numbers R or complex numbers C.
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Property 1.3 (Properties of Linear Spaces).

1. For 0 in K and x in X, Oz = 0 is also in X.

Proof:
0x = (04 0)z = 0z + 0z Eq. (6)
—0x 4 0z = —0z + 0z + Oz Eq. (4)
0= 0z.
|
2. Forx and —x in X, —1lx = —x.
Proof:
0=0x=(-14+1)z=—-1lz+1lz=—-1z+a Eq. (6)
04+ —x=—-le+z+ —x Egs. (3) and (4)
—x = —lz.
|

Example 1.4 (Examples of Linear Spaces).

1. X = {p(t) : polynomial t € R} and K=R.

Solution. Notice that the sum and scalar multiple of polynomials are still polynomials. That is, the
space {p(t) : polynomial t € R} and K =R is a linear space.

2. RN and X = C(RY) as the space of continuous functions and K is either the complex plane or the set
of real numbers.

Solution. Fiz some interval [a,b] such that —oo < a < b < co. Pick two functions, say u : [a,b] — R
and v : [a,b] — R.

Now, for u,v € Cla,b] and a € R, put (u+v)(z) = u(z) +v(x) and (au)(z) = au(z) for any x € [a,b).

Notice that the sum and scalar product of continuous functions on the same domain are again contin-
wous. That is, (u+v)(z) and (ou)(x) are also in Cla, b].

Hence, Cla,b] is a linear space.
3. X ={(a;)j>1 = (a1,a2,---) : a; € K} and K is either the complex plane or the set of real numbers.

Solution. Notice that the sum and scalar product of elements of the compler plane are also in the
complex plane. Hence, {(a;);>1 = (a1,a2,---) : a; € K} is a linear space.

4. A sigma field (0, F,p) and X = LP = {f : Q= R: [, |f|"dp < 0o} and K = R.

Fiz p and pick functions f and g from {f : Q@ = R : [, |f|’du < oo}. Notice that |f + g|” <
[fIP + 9" and | fI” < |ef|P. That is, [, |f + g" du < [o [fIP dp+ [ 19l du < 0o and o [ [fIP dp <
Jo laflP dp < oo for any a € K.

Example 1.5 (Examples of linear spaces from [1]).

(i) X is the space of all polynomials in a single variable s, with real coefficients, here K = R.
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(i) X is the space of all polynomials in N variables Si,--- ,sn, with real coefficients, here K = R.

(ii) G is a domain in the complex plane, and X the space of all functions complex analytic in G, here
K=C

(iv) X = space of all vectors, x = (a1, as,---) with infinitely many real components, here K = R.
(v) Q is a Hausdorff space, X the space of all continuous real-valued functions on @Q, here K = R.
(vi) M is a C* differentiable manifold, X = C°°(M), the space of differentiable functions on M.
(vii) Q is a measure space with measure m, X = L1 (Q,m).
(viii) X = LY(Q,m).
(iz) X = harmonic functions in the upper half-plane.
(x) X = all solutions of a linear partial differential equation in a given domain.

(xi) All meromorphic functions on a given Riemann surface; K = C.

1.1.1 Linear Subspaces

Definition 1.6 (Linear Subspace). For a linear space X over a field K , Y C X is a linear subspace (also
called a sub-linear space) if v and y are in' Y and o in K, then ax + 1y is also in Y.

Remark 1.7. The additive identity element, 0, of X is an element a subspace Y of linear space X and is
also the additive identity element of Y.

Proof: Consider an element y in Y. Put @« = —2. Then —2 -y + y = —y is an element of Y. Put a = —1,
then —1 -y +y =0 is an element of Y. Finally, put « =1, then 1-y + 0 = y is an element of Y.

Definition 1.8. If A and B are subsets of linear subspace Y of linear space X, the for a and 8 in K, the
set A+ BB is defined as aA+ BB ={z€ X :z=ax+ By, forx € Ay € B}.

Property 1.9 (Properties of Linear Subspaces).

1. {0} and X are linear subspaces of X .

Solution.

(a) Notice that 0 = a0+ 0, for any o € K. Hence, {0} is a sublinear space.
(b) It is clear that X C X. Since X is a linear space, we have that X is also a sublinear space of X.

2. The sum of any collection of subspaces is a subspace.

Proof: Notice, if Y1 and Ys are linear subspaces, then Y1 + Yo ={z+y: 2 €Y) and y € Ya} is also
a linear subspace. Consider two arbitrary elements x and y in Y1 + Yo and o in K. Notice by the
definition of Y1 + Ya, we have x = x1 + x2 and y = y1 + yo where x1 and y1 are in Y1 and xo and yo
is in Ya. Furthermore, notice, axy +y1 € Y1 and axs 4y € Yo, since Y1 and Yo are linear subspaces.

Then,

(a1 +y1) + (axe +y2) = azy + aze +y1 + y2
= a(z1 +z2) + (Y1 +12)
=ax+y €Y +Ys.
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By induction we can show that >_..;Y: of any collection of linear subspaces, {Y; : i € I} is also a

linear subspace.

iel
|
3. Assume there is a family of linear subspaces of X denoted {Yy : 0 € I}. Then'Y = (\yc; Yo is also a

linear subspace.
Proof: Fizx andy inY = (\yc; Yo, then x and y are in a fized Yy. Since Yy is a sub-linear space, we
have that ax +y in is Yy. Since 0 was arbitrary, it holds that ax + y in is every Yy for € I. Hence
ar +y € ges Yo

|

Definition 1.10 (Totally Ordered). {Yy : 0 € I} is totally ordered if 01 and 02 in I then Yo, C Yy, or
Yy, C Yo,.

4. For a totally ordered family of sub-linear spaces {Yy : 6 € I}, we have that (J,c; Yy is also a linear
sub-space.

Proof: Consider x and y in the totally ordered family of sub-linear spaces (Jy; Yo, then there exists
01 and 6, such that z € Yy, and y € Yp,. Since the family of sub-linear spaces are totally ordered, we
have either Yy, C Yp, or Yy, C Yy,. Without loss of generality, assume that « € Yy, C Yy, So both z
and y are in Yp,. Since Yy, is a sub-linear space, we have that cx +y in is Yp,. Hence ax+y € (Jy; Yo-

1.2 Linear Spans
Definition 1.11 (Linear Span). For a family of linear subspaces of X, {Yy : 6 € I}, over a field K, consider
a set S CYy for each 0 € I. The Linear Span of S, denoted LS(S), is LS(S) = \ye; Yo-

Property 1.12 (Properties of Linear Spans). LS(S) is the smallest linear space that contains S.

Proof: Recall from Property 1.9 that LS(S) is a linear subspace.

Now, suppose {Yy : 6 € I} is a collection of linear subspaces of X such that S C Yy for each 6 € I. Notice
that Yy 2 LS(S) = Ny Yo. Since Yy was arbitrary, it follows that any linear subspace that contains S
must also contain LS(S). That is, LS(S) is the smallest linear space that contains S.

Theorem 1.13 (Linear Span). For a linear space X over a field K and a set S C X, linear span of S,
LS(S), consists of all possible linear sums of elements of S. That is

n

LS(S) = Zajxj ca; € Kz € S,n is any natural number 9)
j=1

Proof: Put Z = {Z?Zl ajz;a; € K,z € S,n is any natural number}. We want to show that LS(S) =
Z.

In particular, we want to show:

1. Z contains S, and
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2. Z is a linear subspace.

If Z is a linear subspace that containing S then by Property 1.12, we will have Z O LS(S).

Finally, we will show
3. If Y is an arbitrary linear subspace that contains S, then Y 2 Z.

Now,
1. Z contains S is clear, since if we take any element of S, say . Then = = 1z is of the form Eq. (9).
Hence Z contains S.

2. Pick 21,29, in Z and « in K. Then z; = Z;V:ll ajz; for aj € Kz; € S, and 2z = 25\21 B;y; for
B ek, yes.

Now, without loss of generality for No > N7, we have
N N N No—N
az) + 22 = Ej:ll aqjr; + Ej:zl Biy; = Zj:11(aajxj + B5) + Zjil ' Bjy;-
Notice that each ar; belongs to K. Since Z;V:ll(aajxj +8;) + Z;VZZINI B;y; is of the form Eq. (9), we
have that az; + 29 € Z. Hence, Z is a linear space.

Therefore by Property 1.12, we have Z 2 LS(S)

3. Consider an arbitrary linear subspace Y O S and pick z € Z. By definition of Z, z = Z?Zl ajz; for
some n € N. Since Y is a linear subspace which contains S, we have each o;x; € Y. Furthermore,

Z;V:1 ajx; is an element of Y, since it is a linear combination of elements of S. Hence Y O Z.

So, we have shown that for any linear subspace Y which contains S, we have that Y 2 Z. But by Prop-
erty 1.12, LS(S) is the smallest linear subspace containing S. Hence, Z = LS(S).

Remark 1.14 (Remark 1 from [1]). An element x of the form in Eq. (9) is called a linear combination of
the points x1,- - ,x, of elements of S. So Theorem 1.13 can be restated as follows:

The linear span of a subset S of a linear space X consists of all linear combinations of elements of S [1].

1.3 Problems from Section 1

Problem 1.15. Prove the first part of Property 1.9.
Problem 1.16. Show that each Example 1.4 are linear spaces.
Problem 1.17. Show that each Example 1.5 are linear spaces.

2 Linear Spaces: Quotient Spaces and Convex Sets

2.1 Quotient Spaces

Definition 2.1 (Equivalent modulo). For a linear subspace Y of linear space X over a field K , we introduce
a relation, (~), between two elements of X . Two arbitrary elements in X, say x,y, are equivalent modulo,
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denoted x ~ vy, if t —y is also in Y.

Claim 2.2. The relation (~) is an equivalence relation.

Proof: Suppose Y is a linear subspace of a linear space X.

z~x (Reflexive). (10)

Pick an arbitrary element of X, say x. Since X is a linear space, we have —z is also in X. Then, we have
—x+x=x—x=0isin Y by definition of Y. Hence x ~ .

If © ~ y,then y ~z (Symmetric). (11)

Suppose (z —y) is an element of Y. Then have —1(x —y) = —z +y = (y — x) is also an element of Y, since
Y is a linear subspace. Hence, if x ~ gy, then y ~ .

If x ~yand y ~ z,then z ~ z (Transitive). (12)
Suppose (x—y) and (y—z) are elements of Y . Since Y is a linear subspace. We have (x—y)+(y—=2) = (x—2)
is also an element of Y. Hence, if x ~ y and y ~ z, then = ~ z.
Hence, by Eqgs. (10) to (12) ~ is an equivalence relation.
|

We can divide the linear space X into distinct equivalence classes modulo linear subspace Y. We denote this
set of equivalence classes as X |y or X mod Y.

Definition 2.3 (Quotient Space). For z,y in a linear space X, and a sublinear space Y, we define the
following:

1. z]={yeX:x~y}={ye X :(x—y) €Y} Thatis forx € X, [x] represents all the elements of
y € X such that the linear combination (x —y) € Y.

2. We represent the Quotient Space of X moduloY as X |y={[z] :x € X}. That is X |y is the set of
all equivalence classes of elements of X.

Remark 2.4. From Definitions 2.1 and 2.3 it is clear that any representative from an equivalence class can
be used to denote that equivalence class. That is, for any element z € [z], [z] = [z].

Proof: Pick z € [z]. Then (# —z) € Y. Since Y is a linear subspace, —1(z — x) = x — z is also an element
of Y. That is x € [z]. Hence, [z] C [z]. By symmetry, [z] D [z]. Thus, [z] = [z], for any z € [] [ |

For X |y to be a linear space, we need to define the sums as well as scalar multiplication of elements of
X |y, denoted [z] + [y] and afz] respectively, for elements [z], [y] € X |y and « € K such that both [z] + [y]
and afz] are in X |y.

Claim 2.5 (4). Notice that both [x] and [y] are subsets of the linear space X. Put [z] + [y] = [x +y]. Then
the operation [z] + [y] = [z + y] is well-defined.

Proof: To show (+) is well-defined, we will show that for 1,25 in [z] and y1,y2 in [y], we have [x1 + y1] =
[x2 + Y.
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1. Suppose z1,z2 € [x] and ya,y2 € [y]. Then, from the definition of [z] and [y], we have (z1 — ), (z2 —
x), (y1 —y), (y2 — y) are elements of Y. Hence, by Claim 2.2, we have that (xs — x1), (y2 — y1) are also
elements of Y.

2. Now, pick an arbitrary z from [x; 4 y1], we want to show that z is also in [z2 + 2.

Notice that z — (x1 + y1) is an element of Y by the definition of [z1 4+ y1]. But Y is a linear space, so
we have

z=(r14+y)=2— (w1 +22 -T2+ Y2 — Y2 + Y1) (13)
=z—(z2+y2)+ (x2—21)+ (y2 —y1) is an element of Y.

Furthermore, since (z2 — 21), (y2 — y1) are elements of the linear subspace Y from (1), we have

(Z —(z1 +y1)> —(@2—21) = (g2 —y1) =2z — ((962 +y2) + (z2 — 1) + (2 — yl)) —(z2 —21) = (2 — 1)

=z — (xz2+y2) 1is an element of Y.

In particular, z ~ (22 + y2). Thus, [z1 + y1] C [z2 + y2]. Furthermore, by symmetry, the converse is
also true. That is, [z1 + y1] = [x2 + y2).

Hence, [z + y] = [z + y] is well-defined. [ |
Claim 2.6 (). For an arbitrary element from X, say z, and o € K, put afzx] = [ax]. The operation
alz] = [ax] is well-defined.

Proof: To show (-) is well-defined, we will show that for z1, 25 in [z] and «a € K, we have [ax1] = [aza].

1. Suppose z1, 2 € [z]. Then (21 — ), (x2 —x) € Y. Since, Y is a linear subspace, (1 — ) — (z2 —x) =
(r1 —x9) isalsoin Y.

2. Pick an arbitrary element z from [az;]. Then z — az; € Y. Since Y is a linear subspace, z — axy —
a(r1—x2) = z—axg is alsoin Y. That is z € [axs]. Hence, [ax] C [axs]. By symmetry, [axi] D [axs].
That is, [ax1] = [axs].

Hence, afz] = [ax] is well defined.

2.2 Linear Maps

As with all algebraic structures, linear structures we have the concept of isomorphism.
Definition 2.7 (Linear Maps). For a linear spaces X*, X over a field K, the mapping T : X — X* is a
linear map if:

1. T(x+y)=T(x)+T(y), and

2. aT(x) =T(ax), fora € K

Definition 2.8 (Isomorphism). X and X* are isomorphic if there exists a linear map T : X — X* which
is a bijection.
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For a fixed linear map T : X — X* | we have the following claims:

Claim 2.9. For a linear subspace Y of linear space X over a field K , T(Y) = {T'(z) : ® € Y} is a linear
subspace.

Proof: To show that T'(Y) is a linear map, we want to show that for « € K and elements z; and z9 in T'(Y"),

we have that az; + 22 is also an element of T(Y').

Notice, if @ in K and z; and z9 in T(Y), there are elements z; and x5 in Y such that T(x;) = z; and
T(xz2) = 29. Since Y is a linear subspace, we have axy + x2 is in Y. Hence T'(ax; + x2) in T(Y). But T is
a linear map, so T(axy + x2) = oT(x1) + T(x2) = azy + 22.

Hence, oT(x1) + T(x2) = az1 + 22 is an element of T'(Y)
|

Claim 2.10. For a linear subspace Y* of linear space X* and another linear space X both over a field K.
Denote T=Y(Y*) as the inverse image of the previously fized linear map T.

That is, T-1(Y*)={x € X : T(x) € Y*}. Then, T~Y(Y*) is a linear subspace.

Proof: Consider two arbitrary elements, z; and 29 in T71(Y*).

Notice, by definition of T~!, we have that T'(z;) and T(z2) are elements of Y*. Then, by linearity of T, we
have T'(az1 + z2) = oT'(21) + T(22) is an element of Y*, since Y™* is a linear subspace.

In particular azy + 29 is in T-1(Y™*).

2.3 Convex Sets

A very important concept in a linear space over the reals is convezity.

Definition 2.11 (Convex Sets). For a linear space X over a field K = R, a subset K C X is said to be
convex if for any two elements x and y in K and « € [0,1], we have ax + (1 — a)y is in K.

Example 2.12. Ezamples of convez sets in the plane are (1) circular disk, (2) triangle, and (3) semicircular
disk.

Solution (Example 2.12).

1. Without loss of generality, fix a circle with radius r centred at (0,0) on the R2-plane. Then for
any element in this circle is of the form |z| < r. Now, Pick two arbitrary ordered pairs from this
circle, say Py(x1,y1) and Py(xa,y2). A convex combination of those elements is aP; + (1 — )Py =

<am1 +[1 = o]z, ayr + [1 — alyz ). Since |x| < r we have |ax; + [1 — Oé]l‘g‘ < r. That is the convex

combination of any two elements in a circle is also an element of the same circle.

Claim 2.13 (Convex Combination). If K is convex, x1, -+ ,xn in K and a1, ,an in [0,1] such that
Z;v:l a; =1, then Z;VZI a;x; is also in K.

The above is called a convex combination of elements of K.

Proof: Notice that = 1z +0x and ax+ (1 — a)y are convex by Definition 2.11 when « € [0, 1] for arbitrary
elements z,y in convex set K.
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Suppose that linear combinations of the form Z;V:1 a;x; are in the convex set K.

A convex combination of arbitrary elements z1,--- ,zy4+1 of K is Z;V:tl Bjx;, for B € [0,1].
Now,

N+1 N

> Biwi =Y Bz + N1z

j=1 j=1

Notice that By =1— 7, ;.

Then we have,

Since Z;V:1 Bjx; is an element in convex set K by inductive hypothesis, and

N+1

N N
Zﬁjxj ZZﬂjwj-f— 1—Zﬁj TN41
i=1 i=1 i=1

N 1 N N
= Zﬂj =~ 5 Zﬂj%’ +11- Zﬂj TN41
j=1 Zj:l 5j j=1 j=1

1

S5 is an element of the

field R, we have Z;v:ll Bjz; is indeed an element of the convex set K.

Theorem 2.14. Let X be a linear space over the reals.

(i)

(ii)

(iii)

(iv)

The empty set is conver.
Proof: This is vacuously true.

In any case, suppose otherwise. Suppose that () is not convex. Then there are elements x and y in ()
such that ax + (1 — a)y is not in §. However, this is a contradiction, since there are no elements in ().
Hence, the empty set is conver.

|
A subset consisting of a single point is conver.
Proof: Suppose x is the only element in some subset K of the linear space X. Notice that x =
z(a+1—a)=ax+ (1 —a)x. Hence, a subset consisting of a single point is conver.

|

FEvery linear subspace of X 1is convex.

Proof: Pick an arbitrary linear subspace of X, say K. Then by the definition of a linear subspace, for
any two arbitrary elements x and y in K, we have that ax + (1 — «)y is also an element of K. Since
K was an arbitrary linear subspace of X, we have that every linear subspace of X is convex.

The sum of two convex subsets is convex.

Proof: A convex combination of two elements, z1 and z2 in the set K1 + Ko is z = azy + (1 — a)z1,
for o € [0,1] We want to show that z is also an element of the set K1 + Ko.
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(v)

(vi)

(vii)

(viii)

(iz)

Now,

z=az1+(1—a)zy =a(zy +22) + (1 —a)(y1 +y2) for x1,y1 € K1 and z2,y2 € K>
= (ole +(1— a)yl) + (axz +(1 - Oé)yz)

Since K7 is a convex subset, for elements x1,y1 in the set K1, ax; + (1 — a)yy is also an element of
K. Similarly, since Ko is a convex subset, for elements xa,ys in the set Ko we have axs + (1 — a)yo
is also an element of Ks.

Hence, z = az1 + (1 — a)zy is also an element of the set Ky + K.

If K is convex, so is —K.

Proof: An arbitrary convex combination of elements from —K , is z = a(—x)+(1—a)(—y) for elements
z,y € K. We want to show that z is also an element of —K

But this is clear, since z = — (a(x) +(1- a)(y)) , and ax + (1 — a)y is an element of a convex set K.

The intersection of an arbitrary collection of convex sets is convew.

Proof: Suppose that {Ky : 0 € I} is any collection of convex subsets of linear space X. Then a convex
combination of elements from Nger Ky is z = ax + (1 — a)y, for elements x,y in Ngc1Ky. We want to
show that z is also an element of Ngecr Ky.

But this is clear, since x,y is an element of a particular Kg,. Since, Kg, is a convex subset, we have
that ax + (1 — )y is also an arbitrary element of Kg,. But 0y was arbitrary. Hence the previous much
be true for any 0y € I. Hence, z = ax + (1 — )y is also an element of NgcrKy.

Let K; be a collection of convex subsets that is totally ordered by inclusion. Then their union |J K; is
convez.

Proof: Suppose that {Ky : 0 € I} a totally ordered collection of convex subsets of linear space X. Then
a convex combination of elements of UeeI Ky is z = ax; + (1 — a)xo for x1 in Ky, and x5 in Ky,.
Without loss of generality, suppose that Ko, C Ky,. Then it is clear that 1 in also an element of Ko,.
Since Ky, is a conver subset, we have that z = axy + (1 — a)xg is also an element of Ko. Hence, z is
an element of Uy Ko-

The image of a conver set under a linear map is convez.
Proof: Fiz a linear map T, such that T : X — X*, where X and X* are linear spaces.

Now, a conver combination of elements of X* is z = az; + (1 — a)ze from elements z1 and zo in X*.
Then z = aT(x) + (1 — a)T(y) for elements x,y in X. Then by Definition 2.7, we have oT(z) + (1 —

a)T(y) = T(:v +(1— a)y), Since x4+ (1 — a)y is in the conver set X, we have that z is an element of
X*.

|
The inverse image of a convex set under a linear map is convex.

Proof: Since the inverse image of a convex set under a linear space by Claim 2.10, we can apply (i)
to show that indeed, the inverse image of a convex set under a linear map also a convex set.
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Property 2.15 (Convex Sets). For a linear space X over a field K where K =R

1.

If Y is a linear subspace of X, then'Y is convex.
Proof: Pick arbitrary x1 and 2 in'Y, o in [0,1]. Since Y is linear, ax; + (1 — o)z is in Y.

Hence Y is conver.

For two convex subsets, Y1 and Ys of X, Y1 4+ Y5 is also convew.

Proof: Pick arbitrary elements zy and z2 of Y1 + Ya, and « between [0,1]. Notice that z1 = x1 + y1,
and zo = x2 + Y2, where x1,x2 in Yy and y1,y2 in Ys.

Consider azy + (1 —a)zz = a(zy +y1) + (1 — a)(z2 + y2) = az1 + (1 — a)(z2) + ay1 + (1 — a)(y2).

Notice that axy + (1 — a)(x2) is in Y1 and ayy + (1 — a)(y2) is in Ya, since Y1 and Ys are convex sets.

In particular, az; + (1 —a)zo = a(z1 +y1) + (1 — @) (x2 +y2) s in Y1 + Yy, Hence, Y1 + Y3 is conver.
| ]

For a family of convex sets of X, say Ky for 6 € I. Put K = (\yc; Ky, then K is also convez.

Proof: Pick xz andy from K and « in [0,1] and fix 6 in I. Notice x and y are also in Ky. Since Ky
is convex, we have ax + (1 — )y is in K.

Since 0 was arbitrary, the previous must be true for any 0 in I. That is, ax + (1 — )y is in K.
Hence, K is conver.

|
Consider a family of totally ordered convex sets of X, say Ky for 8 € I. Recall Definition 1.10.
Without loss of generality, assume that Ko, C Kg,. Put K = Jyc; Ko, then K is also convex.
Proof: Pick x and y from K and « in [0,1], then there exists 01 and 0y such that z in is Ko, and y
m 1s Ko, .
Since, Ko, C Ky,, we have that x is also in Kg,. Since Ky, is a convex set, we have, ax + (1 — )y is
in Ky,. In particular, since Ky, C K, we have that ax + (1 — a)y is in K.

Hence, K is convezr.

Fiz a linear map, say T : X — Y. For a convex K C X, T(K) is also convez.

Proof: Pick z1 and z3 from K and « in [0, 1], then there exists x1 and xo in K such that T(z1) = 2
and T(x2) = 2.

Since K is a convex set, we have that oz + (1 — o)xg is in K, hence T(axy + (1 — a)xs) is in T(K).

Since T is a linear map, we have T'(ax; + (1 —a)x2) = aT(x1) + T((1 — «@)xs). In particular oT (x1) +
T((1—a)x) =az1 + (1 —a)zy is in T(K).

Hence, T(K) is convex.

Fix a linear map, say T : X — Y. For a conver K CY, T~ (K) is also convexr.

Proof: Pick 1 and x4 from T=*(K) and o in [0,1], then there exists T'(x1) and T(x2) from K.
Since K is convez, we have oT(x1) + T((1 — a)za) is in K.

Since T is a linear map, we have that oT(x1) + T((1 — a)z2) = T(axy + (1 — @)xs) is in K.

In particular, axy + (1 — a)zy is in T~H(K).

Hence, T~Y(K) is convex.
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2.3.1 Convex Hull

Definition 2.16. For any subset S of linear space X over a field K = R, where S is not necessarily convez,
consider a family of convex sets, K9 2 S. We define that convex hull of a set S as cu(S) = Ny Ko-
Theorem 2.17.

(i) The convex hull of S is the smallest convex set containing S.
(ii) The convex hull of S consists of all convex combinations of points of S.

Claim 2.18. cu(S) = (\yc; Ko is the smallest convex set which contains S. That is,

1. cu(S) is convex,
2. cu(S) contains S, and

3. If K is another set that contains S, then K D cu(S)
Proof:

1. Recall by Property 2.15 that cu(S) = [y, Ky is a convex set.
2. Notice that each S C Ky. In particular S C ﬂOGI K.

3. Suppose S C K, Since K is one of Ky, we have that cu(S) C K. That is, cu(S) = (ye; Ko is the
smallest convex set which contains S.

Claim 2.19. cu(S) = {Z?:l ajryay € S04 € (0,1, 370 aj = 1,n is any natural number}
Proof:

1. Put Z = {Z?=1 ajzj i ay € S a5 €[0,1], 377, aj = 1,1 is any natural number}.
It is clear that S C Z, since if we take any element from S, say s, it can be written in the form Z;:l as,

for @ = 1. In particular, s is also an element of Z.

Pick z; and 29 in Z and « in [0,1]. Notice that z; = Zjvzl a;x; and zg = Zﬁl By;-

Now, az; + (1 — a)zg = ozE;-V:l a;x; + (1 —a) ZJMZI By;-

Notice, each z; and y; are elements of S. Furthermore, the sum, « Zjvzl a;+(1—a) ZJM:1 B;j=1,we

have that az; + (1 — a)zz is a convex combination of elements of S. In particular, az; + (1 — @)z € Z.
Therefore, Z is a convex set.

Hence, Z is a convex set containing S, by Claim 2.18 Z also contains cu(.S).

2. Suppose K is another convex set containing S. Then from above, K must contain all convex combina-~
tions of elements of S. But, by the definition of Z, Z only convexr combinations of elements of S. That
is, K contains Z. Hence Z is the smallest convex set containing S.

By (1) and (2), we have that cu(S) = Z. That is, the convex hull of S consists of all conver combinations of
points of S.
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Definition 2.20 (Extreme Subset from [1]). A subset E of a convex set K is called an extreme subset if:

1. E is convexr and nonempty, and

2. whenever a point x of E is expressed as

then both y and z belong to E.

An extreme subset consisting of a single point is called an extreme point of K.
Example 2.21 (Example from [1]). K is the interval 0 < x < 1; the two endpoints are extreme points.

Example 2.22 (Example from [1]). K is the closed disk, x*> +y* < 1. Every point on the circle x*> +y* = 1
18 an extreme point.

Example 2.23 (Example from [1]). The open disk, x> + y* < 1 has no extreme points.

Example 2.24 (Example from [1])). K a polyhedron, including faces. Its extreme subsets are its faces, edges,
vertices, and of course K itself.

Now, we introduce some useful theorems.

Theorem 2.25 (Theorem from [1]). Let K be a convex set, E an extreme subset of K, and F an extreme
subset of E. Then F is an extreme subset of K.

Theorem 2.26 (Theorem from [1]). Let M be a linear map of the linear space X into the linear space U.
Let K be a convex subset of U, E an extreme subset of K. Then the inverse image of E is either empty or
an extreme subset of the inverse image of K.

By taking U to be one dimensional, we have the following corollary of Theorem 2.26:

Corollary 2.27 (Corollary from [1]). Denote by H a convex subset of a linear space X, | a linear map of
X into R, Hypin and Hp,q, the subsets of H, where | achieves its minimum and mazimum, respectively.

Claim 2.28 (Claim from [1]). When nonempty, H i, and H,,qp are extreme points.

2.4 Problems from Section 2

Problem 2.29. Prove Claim 2.6.

Problem 2.30. Show that each Example 2.12 is a convex set.

Problem 2.31. Prove Claim 2.13 by induction with the base case N = 2
Problem 2.32. Prove Theorem 2.14.

Problem 2.33. Prove Theorem 2.17.

Problem 2.34. Prove all claims from Examples 2.21 to 2.24.

Problem 2.35. Prove Theorem 2.25.

Problem 2.36. Prove Theorem 2.26.

Problem 2.37. Prove Corollary 2.27 as well as Claim 2.28.
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3 Normed Linear Spaces: Definition and Basic Properties

3.1 Normed Linear Space

Definition 3.1 (Normed Linear Space). Consider a linear space represented by X and a field K which will
be either R or C, we say that a morm represented by N is a function from X — Ry with the following
properties:

1. N(xz) is nonnegative and N(z) =0 <= x =0 for any z in X  (definiteness),

2. for all « in K and for any x in X, N(az) = |a|N(z) (homogeneity),

3. for any two elements in X, say x and y, we have N(xz +y) < N(x)+ N(y) (Subadditivity).

A normed linear space is a linear space equipped with a norm as defined above. For convenience, we
represent N(z) as ||z||.

Before we proceed, we have two claims:

Claim 3.2. For z in X, we have |—z| = ||z||
Proof: This is clear, since |—z| = |-1]| [|z]| = ||z]|.
|
Remark 3.3. It follow from Definition 3.1 for elements x,y, z in a normed linear space X that,
@+ 9+ 2] < llz -+ 9l + 1120 < llall + Iyl + 21
Furthermore, by induction, we have,
Zwi SZ”JJZH foraz; e X
i€l iel
Claim 3.4. For two elements of X, say x and y, we have that ‘Hx” - Hy||‘ < |lz =yl
Proof: Notice that ||z|| = || — y + y||. From the definition of a norm , we have that ||z|| = ||z —y + y|| <
[ = yll + llyll. Therefore, [[z[| — [y <[z =yl
Furthermore, we have that ||y|| — ||z| < ||y — z|| = ||x — y|| by Claim 3.2. The proof follows.
|

Definition 3.5 (Distance). Consider a function d : X x X — Ry, we define the distance between two
elements of X, say x and y as d(z,y) = ||y — z||. By Definition 3.1 and Claims 3.2 and 3.4 the following
properties hold:

1. d(z,y) > 0 and d(z,y) =0 if y = x.

2. d(z,y) = d(y,x).
3. d(z,2) < d(z,y) +d(y, 2)
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The following is a path of concepts which you will be familiar with:

(|lz||)— (distance)— (topology)— (sequences =, — © € R <= |z, — x| — 0)—(open, closed and compact
sets). These concepts will play an important role in the theory of linear spaces.

We can now discuss metrics which are equivalent.

Definition 3.6 (Equivalent Metrics). For a linear space X and two different norms, say ||-||; and ||-||,, the
two norms ||-||; and ||-||, are equivalent if there exists 0 < ¢ < oo such that for any x in X, c||z|; < |z, <

~lal-

Claim 3.7. For a linear space X and a given norm ||-||. If Y C X linear subspace, then Y equipped with
Il is @ new normed linear space.

Proof: This is clear, since Y is a linear subspace of X. Hence, by Definition 3.1 we have that Y is a new
normed linear space.

Claim 3.8 (Product Space). For linear spaces X1 equipped with ||-||; and Xo equipped with ||-|,, we definition
a new space, X1 X Xo = {(x1,22) : v1 € X1,29 € Xo}. Notice that X1 X X5 is a linear space. Scalar
multiplication is defined by a(x1,x2) = (ax1,axs). The following are three possible ways to define a norm
on X1 X X2 N

(i) \(z1, z2) [l = [lzally + 2]l
(it) [|(z1, 22)|| = max{|[z1[|; , [lz2]l,}-
2 2
(ii1) |[(z1, z2)|| = y/llz1]l] + [lz2]l5-
Proof: Apply Definition 3.1 to each to show each is a norm on X; x Xo. [ |

We now recall some elementary definitions from Real Analysis in the context of norms:

Definition 3.9 (Sequence). A sequence of real numbers is a function from N to R. That is, for f : N— R
denoted x,, = f(n), we write the sequence as an ordered n-tuple (x1, 2,23, ) or more compactly (Tn)nen-

Definition 3.10 (Convergence). For a linear space X equipped with a norm |||, the sequence (xy),~,
converges to an element x in X,

if for any € > 0, there is at least one integer N such that for any n > N we have ||z, — z|| < e.

We then write x, — x as n — oo or lim z, = or lim ||z, — x| = 0.
n— oo n—oo

Definition 3.11 (Supremum and Infimum). The Supremum of a sequence, denoted (xp)nen in a linear
space X, is defined as the least upper bound if such a sequence is bounded above by a real number, say x. If
(Tn)nen is unbounded above, then we say that the supremum of the sequence equals co.

That is, if (Xn)nen is an increasing sequence in R, we have,
sup{z, :n €N} = lim z, =z
n—oo

—
Ve > 0,3z; € {z,} such thatz; >z —¢
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Similarly, the Infimum of a sequence, is defined as the greatest lower bound if such a sequence is bounded

below by a real number. If (xy)nen s unbounded below, then we say that the infimum of the sequence equals
—00.

That is, if (n)nen is n decreasing sequence in R, we have,
inf{z,:neN}= lim z, =z
n—oo

=
Ve > 0,3z; € {z,} such thatz; <z +e€

Proposition 3.12 (from [2]). For a normed linear space X and elements &, Yn, x, y in X, an, o in K,
the following are met:

(i) The limit point x in Definition 3.10 is uniquely determined.

(i) If x, — © as n — oo, then the sequence (x,) is bounded, that is, there is a number r > 0 such that
]l < 7 for any n.

(i1i) If x, — x as n — oo, then,
|zl = llzl]] asn— oo
() If x, — x and y, — y as n — oo, then
Tn+Y > T+Yy asn— oo
(v) If z,, —» x and a,, — « as n — oo, then

QpTy —> QT aSN — 00

Proof:

(i) Suppose a sequence z,, to x and y. Then, 0 < |z —y|| = ||z — 2z, + 2, —y| < ||z — 20 || +[J2n —y|| <0
as n — oco. Hence, x = y.

(ii) By Definition 3.10, we have ||z, — x| = 0 as n — oo. Put M > 0. Then it is clear that M is an
upper bound for ||z, — z||. Now, ||x,|| = [|tn — = + || < ||zn — 2| + ||z|| < M + ||z||. That is, ||z, is
bounded above by r = M + ||z||.

(iii) From Claim 3.4, we have )||xn|| - ||a;||‘ < |l&n —z|| = 0 as n — 0.
(iv) Suppose x,, — z and y, — y as n — oco. We have 0 < H(a:n —Yn) — (zfy)H = H(xn —z)+ (Y —yn) ‘ <
’ Ty — xH + ’ Yn — yH = 0. By Definition 3.10, the proof follows.

(v) For a sequence z,, — x and «,, — « as n — oo, we have
lonzy, — az|| = ||apx, — oz, + az, — azx||

= H(an — )z, + a(r, — x)H

= H(an — )z, || + | H(Jcn —JI)H =0 asn—
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Claim 3.13. For a linear subspace Y of linear space X over a field K and a given norm |-, denote Y as

the closure of Y. That is, Y ={z € X : I(zp)pn>1 €Y and z,, = 2} UY. Then,

(i) Y is a linear subspace and

(ii) Y equipped with ||-|| is a new normed linear subspace.
Proof:

1. Notice that we can find two sequences x,, and y, in Y such that 2 and y are in Y. Since Y is a linear
subspace, the sequence ax, + y, in also in Y. Then by the definition of Y, there is ax +y in Y such
that (ax, + yn) = (ax + y) for some a € K. Hence Y is a linear subspace of X.

2. Notice for two elements in Y say z,y, we have |z, — x| < 2|€a\ and |y, —y| < § for any € > 0 and
a € K. For now, suppose « # 0.

Then, ||a(z, —x) + (Yyn — y)H = H(amn +Yn) — (ax —|—y)H < |af H(acn — x)H + ||yn — yH < 2|€a‘ +5=c
The case when « = 0, is clear, since Ha(xn —z)+ (Yn — y)H = llyn — yH <e
]
Example 3.14. Suppose Y is a linear subspace of X equipped with a norm ||-||, and Y is closed. Recall

from a previous lecture, that we defined X |y= {[z] : x € X}, where [zf] ={z € X : (z—x) € Y}. Recall that
X |y is a linear space where addition and multiplication by scalars is defined.

Define H[m]H =inf{||z|| : z € [z]}. Then H[as]H is a norm in X |y.

Proof: Two show that ||[z]|| is a norm in X |y, we will show that it satisfies the three properties from Def-
inition 3.1.

Before we begin, notice that for [0] € X |y, we have [0] ={z€ X : (2 —-0) €Y} =Y.

1. |4l = 0, is clear, since we are taking the infimum over nonnegative numbers. We want to show
Il =0 < []=0].
Pick the element, say [z], from the quotient space X |y, such that ||[z]|| = 0. By our definition we have,

inf{||z]| : z—x € Y and =,z € X} = 0. Notice, ||z;|| — 0 implies that z; — 0, since for any € > 0 we
have \||zj|| - o‘ = |zl = llz; — O]| < € for n > ko.

Now, z; — 0 implies that the sequence (z; — ) — —z. Since Y is closed and (z; — ) — —x, we have
that —x € Y. Furthermore, since Y is a linear space, we have that x is also an element of Y.

Claim 3.15. Ifx € Y then [z] = [0].
Proof: We will show that if z € Y then (i) [z] C [0] and (ii) [0] C [z].
(i) Pick z € [z], then z —z € Y. Notice that Y is a linear subspace, € Y from above, and

z—x €Y, we have 2z = z — ¢ 4+ x is also in an element of Y. Since z € Y, we have that
z€[0]={z:2=(2-0) € Y}. Hence, [z] C [0].
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(ii) Pick z € [0]. Then (2 —0) = z € Y. Since Y is a linear space and z € Y, we have z —  is also in
Y. Hence, z € [z]. That is, [0] C [z].
By (i) and (ii), we have if € Y then [z] = [0].

Hence, we have that
IHII=0 < []=10] (14)

2. For a scalar, a € K, we want to show that Ha : [m]H = |af - H[m]H

(i) From Claim 2.6, we have that afz] = [az].
Notice, az]} by the definition of H[x]” But, inf{||z]|: z € [az]} =

[cwc]H = inf{||z]| : z €

inf {||z]| : z € alz]}. So we haveH

ax]H = inf {||2]| : 2 € az]}.

(ii) Assume for now « # 0. Then,

H[am]H —inf{||2|| : z € afz]} = inf {||z|| : 2 c [x}}

But,
inf {||2| : z € afz]} = inf {||z|| : 2 c [x]}
. 1 1
= 1nf{|a| : Haz Pz € [x]}
= a|inf{Hiz : éz € [x]}
Put 2z =y, then |ofinf {[jy|| : y € [z]} = |« H[a:]” by definition. That is, Ha . [x}H = o - H[x] ‘,
when a # 0.
(iii) Consider a = 0. Then |of - H[az]H — 0, since [0] = 0. While Ha : [x]H - H[ozx]” - H[O]H ~0
by Eq. (14).

Hence by (i), (ii), (iii) we have,

Ha . [m]” = H[am]H for any o € K (15)

3. (i) Now, we want to show that H H < H H + H H

By definition, H H T4y H = inf {||z]| : z € [x + y]}. Then, inf{||z|:z€[z+y]} =
inf {||z1 + 22|| : 21 € [2], 22 € [y]}. By the definition of the norm, we have ||z1 + 22| < ||z1]|+||22]|-
Hence, [|z1 + 22| < mf{||z1|\ + [z}

(ii) Now, we will show that inf {||z1]| + ||z2||} < inf {||z1||} + inf {||z2]|}
If either inf {||z1]|} or inf {||22||} are oo, then it is clear inf {||z1]| + ||22]|} < occ.

(iii) Suppose inf {||z1]|} and inf {||22]|} are finite, fix € > 0, then we can find wy € [z] and we € [y]
such that
inf{[z1] : 21 € [2]} < [Jun || < inf{[|z1]] : 21 €[]} +
inf{|[zo] : 22 € [y]} < [lwall < inf{]lz] : 22 € [y]} +
Then,

inf {[|z1 + 2zl - 21 + 22} < [lwa [l + lwell < inf{{lz1]] : 21 € [a]} + inf{[z2]| : 22 € [y]} + e
Hence, inf {[[z1]| + |22/} < inf {||z1[]} + inf {[|z] }-

and,

NN pojen
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Hence by (1), (2), (3), ||[z]|| = inf {||z]| : z € [z]} is a norm in X |y.

3.2 Banach Space
We begin with some preliminaries put into the context of linear spaces equipped with a norm that you should
be familiar with. For convenience, we now write the sequence (zp)n>1 = (21,22, -+ ,2;,---) as simply (zy).

Definition 3.16 (Cauchy Sequence). For a linear space X equipped with a norm ||-||, the sequence (x,) is
a sequence is a Cauchy Sequence,

if for any € > 0, there is at least one integer ko, such that ||x; — zi|| < € for any k,j > ko.

Remark 3.17 (Relationship between Convergence and Cauchy Sequences). Cauchy sequences are intimately
related to convergent sequences. For example, every convergent sequence in a normed linear space X is also
a Cauchy sequence, since if x,, — x, then

€
l2n = Zmll = |20 =2+ & = 2wl < flzn — 2l +lz —nll <2x 5 =

The previous theorem is an elementary result in real analysis that will be useful for completing normed linear
spaces.

Theorem 3.18. FEvery Cauchy sequence is bounded.

Proof: Recall,

||| — ||y||‘ < ||z —yl||. Then ||z, || = [|Zm| < ||2n — Tm|| < € for any € > 0 and any n,m > k.

Now, fix m = ko. Then, ||z,| < €+ ||zk, || for any n > ko. Put M = maz{||z1||, |z2]l, -, |2k || + €}
Hence, ||z,|| < M. That is every Cauchy sequence is bounded.

Definition 3.19 (Complete Space). X is a complete space if every Cauchy sequence converges in X .

Notice that a Cauchy sequence may not converge in a given space. E.g., take sequence x,, = % in the interval
(0,1). Then it is clear that x,, is Cauchy, but x,, converges to 0 which is not in the given space.

Proposition 3.20. In a normed space, each convergent sequence is Cauchy.

Proof: For a convergent sequence x,, in a normed linear space X, we have ||z, — x| < § for some n > k.

Then, ||z, — Tm| = H(mn —z)+ (z — xm)H < ‘

a:n—xH—i—Hx—meSeformmzk:o. [ |

Remark 3.21 (Complete Normed Linear Space). Because Cauchy sequences are the sequences whose terms
grow close together, the fields where all Cauchy sequences converge are the fields that are not “missing” any
numbers. Furthermore, any divergent sequence is “truly” divergent, that is here is no bigger normed linear
space which makes it convergent.

In the case of the real line, every Cauchy sequence converges; that is, being a Cauchy sequence is sufficient
to guarantee the existence of a limit on the real line. In the general case, however, this is not so [1].

Definition 3.22 (Banach Space). A Banach Space is a normed linear space which is also complete. That
18,
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If (xy,) is a Cauchy sequence in a normed linear space X, then there is at least one x in X such that x, — x.
Banach spaces are also called complete normed spaces [2].

Remark 3.23. From Proposition 3.20, we get the following so-called Cauchy convergence criterion:
In a Banach space, a sequence is convergent if and only it is Cauchy.

Example 3.24 (Example from [1]). Show that if X is Banach space, Y a closed subspace of X, the quotient
space X |y is complete.

Hint 1. Use a Cauchy sequence (qr,) in X |y that satisfies ||qn — gny1]| < %

How do I use this hint?!

3.3 Examples of Normed Linear Spaces

We now describe a number of the most important normed linear spaces from [1].

Example 3.25 (Example from [1]). The space of all vectors with infinite number of components, © =
(a1,az,---) € X where aj is complex and |a;| are bounded. The norm is

7] = sup|a;| (16)
J

This space is denoted as [*°; it is complete.

Example 3.26 (Example from [1]). The space of all vectors with infinitely many components such that
> laj|” < oo, p some fized number > 1. The norm is

ol = (S la,l?)’ (")

This space is denoted IP; it is complete.

Example 3.27 (Example from [1]). S an abstract set, X the space of all complex-valued functions f that
are bounded. The norm is

[floe = sup £ (s)| (18)
S

This space is complete.

Example 3.28 (Example from [1]). @ a topological space, X the space of all complex valued, continuous,
bounded functions f on Q. The norm is

|f] = sup|f(q)] (19)
Q

This space is complete.

Example 3.29 (Example from [1]). @ a topological space, X the space of all complex valued, continuous
functions f with compact support. The norm is

[ flmaa = max[f(g)] (20)

This space is not complete unless Q) is compact.
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Example 3.30 (Example from [1]). D some domain in R™, the the space of all C*° functions f in D with
the following property: for some integer k and p > 1,

/ |0 fIP dz < 00 for all |a| <k,
D
Where 0% is any partial derivative:

n 0
aa:ale.,.ag, aj:axj7 |a|:a1+...+an

The norm is
ey = 3 [10n1 s (21)
la|<k

Theorem 3.31 (from [1]). The norms defined in Examples 3.25 to 3.30 have properties from Definition 3.1
imposed on a norm.

3.4 Problems from Section 3

Problem 3.32. Show that the properties enumerated in Definition 3.5 hold.
Problem 3.33. Prove Claim 3.7

Problem 3.34. Show that each possible definition of a norm of a product space from Claim 3.8 has the
properties of a norm and that all three are equivalent by Claim 3.7.

Problem 3.35. Prove Claim 3.13.
Problem 3.36. Prove Example 3.24.

4 Completing a Normed Linear Space (INLS)

Before we consider the process of completing a normed linear space, we first consider some normed linear
space that are not complete.

Example 4.1. Consider the space of continuous functions on the closed interval [a,b] denoted Cla,b]. On

this space, introduce a norm, say the L' morm. That is, ||f,g|| = f; |f(z) — g(z)|dz for f,g € Cla,b]. This
normed linear space is not complete.

Hint 2. For a sequence not to be Cauchy, there needs to be some N > 0 such that for some ¢ > 0, there
are m,n > N where ||a, — an|| > €. In other words, no matter how far out into the sequence the terms are,
there is no guarantee they will be close together.

Solution (Example 4.1). It is clear that this space is not complete. Indeed, we can find a sequence in such
a space such that this sequence will not converge.

For instance, put [a,b] = [0,1] and f,(x) = nx. Then,

1 1 271 _
bl = [ 16ule) = @l = [ o = maldo = [lm—0) | =22

For m =n+ 1, we always have || f,, fm| = . That is by the hint provided in Hint 2, we have some N > 0

such that for e = %, there are m,n > N we have || f, g|| > e.
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Example 4.2. Let X = (0,1) and take the norm between any two numbers x and y belonging to X to be
|z, y|| = |z — y|. This normed linear space is not complete.

Solution (Example 4.2). Take z, = % Notice that x,, is a Cauchy sequence that converges to 0. However,
also notice that 0 is not in X. That is X is not a complete normed linear space.

Notice that convergence is defined in terms of a limit. For example, take a convergent sequence x,, — x in a
normed linear space X, and remove the point z from X, denoted X \ . That is, assume for any n, x, # x.
Then (x,,) is still a sequence in the subspace X \ z, but it no longer converges. So (x,) converges in X but
not in X \ . How are we to know whether a normed linear space has the property that all sequences are
Cauchy sequences? If a normed linear space is “missing” these limit points, is it possible to add them into
the normed linear space X7

The processes of adding these “missing” points is called Completion of a Normed Linear Space.

4.1 The Process of Completion of a Normed Linear Space

This lecture presents the standard method of completing a normed linear space. The construction does not
differ from the one employed to complete a metric space found in [3] and is inspired from the construction
of the real numbers by Cantor.

We would like to define a method to complete a normed linear space, that is we will introduce new points in
the space to make it complete. This is based on a general method as follows:

Step 1 Consider a Normed Linear Space (NLS) represented by X such that X is not necessarily complete
with respect to a given norm.

Step 2 Define a new space, Z, of Cauchy sequences from X, that is

Z ={(xj)j>1:x; € X and (z;);>1 is a Cauchy sequence}

Notice that Z is a linear subspace of X, since we can add two sequence in Z by adding each coordinate,

and if each sequence is Cauchy, then the sum is also Cauchy. Hence Z is closed under addition. For

the same reasons, Z is also closed under scalar multiplication.

Remark 4.3. If we stopped here, we may be tempted to define a norm as follows:

For a Cauchy Sequence (x;);>1 in the previously defined linear space Z, define ||(z;);>1]] = lim |[jz;].
- - n—o0

Since (x;);>1 is a Cauchy sequence, we know that (x;);>1 will converge.

Notice that ||(z;)|| = lim ||z;]| = 0 does not imply that (x;);>1 = (0);>1 it only implies x; — 0.
J—o0 - -

Hence, ||(z;)|| = nh—>120 lz;]| is not a norm on Z as defined in Definition 8.1.

Step 3 Now, define a subspace of Z, denoted X, as the space of all constant sequences. That is, Xy =
{(z,z,z, ) : x € X}. Tt is clear that each constant sequence in X is Cauchy. Furthermore, there is
a one-to-one correspondence between X and Xg. In this way, we have “embeded” X into Z. That is,
Xo C Z, where X represents the original set X.

Step 4 We wish to define a norm on Z. To define such a norm, we will need to introduce equivalence relations
on Z.
We will say that two sequence, (x;);>1 and (y;);>1 are equivalent, denoted (x;);j>1 ~ (y;);>1, if
yj —x; =+ 0 < lim (y; — ;) =0.
j—o0
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That is, we can create a new linear subspace Y C Z such that Y = {(z;);>1 € Z:x; — 0}. Then
(xj)j>1 and (y;);>1 are equivalent if we have (y;);>1 — (2;);>1 = (y; — x;);>1 is in Y. Notice that YV’
is a linear subspace of Z since it is closed under addition and scalar multiplication.

Step 5 Define X = Z |y= {[(x;);>1] : (z;);>1 € Z}. Notice that elements of X are equivalence classes. That
is [(xj);>1] = {(#j)j>1: 25 —x; = 0}. We will show that the closure of Xy, denoted Xy, is exactly

X =12y
Step 6 Define H[(x])Pl]H = lim ||z;||. For convenience, we now write the sequence (z;),>1 as simply (z;).
- J—00 =
Claim 4.4.

(t) lim ||z;|| is well defined.
j—o0
is a norm as defined in Definition 3.1.

(ii) ||[(2)

Proof:

1) For each Cauchy Sequence (x;), we have that the sequence of norms (||x;||) is also Cauchy, since,
() Yy oeq J q j Y
for any € > 0, there is some ko such that |||z;|| — ||xk||‘ < |z —xkll < € for any k,j > ko

by Claim 8.4. Furthermore, since the sequence of norms (||x;||) is a Cauchy sequence of real
numbers, by Remark 3.21 we have that the sequence of norms, (||x;||), converges.

Now, take two sequences (x;);>1 and (y;);>1 both in [(x;)], such that [(x;)] = [(y;)]. We want to
show that lim |jz;|| = lim ||y,|.
j—o0 j—oo
Since we assumed that [(x;)] = [(y;)], we have [(y;)] ~ [(z;)] <= vy; —x; — 0. Then
lly; — x;]| = 0. By Claim 3.4, we have )||yj|| - ||x]||‘ — 0. Hence, lim |z;|| = lim ||y;].
j—o0 j—o0o

That is lim ||z;|| s well defined.
j—o00

(i) Now we will show that all three properties of a norm is satisfied.

(1) It is clear that H[xj] ’ > 0 since each ||z;|| > 0. Hence [xJ]H = lim ||z;|| > 0.
j—oo
Now, assume that ||[z;]|| = 0, then by definition we have ||[z;]|| = lim ||z;|| = 0.
j—oo
We claim that the above means that [z;] = [0]. That is, (z;) €Y.
Now, ||z; — 0| = ||z, then lim ||z; — 0|l = lim |z;|| =0, since (z;) € Y.
j—o00 j—o0

That s, [z;] = [0].

(2) Pick some scalar, say . Now, a[mj]H = H[omcj]H = lim |laz;|| = |a| lim [jz;| = |o H[xj]H
Jj—o0 Jj—o0

Hence, ||afz;]|| = |of H[x]] .
(8) Recall that [x;] + [y;] = [z, + y;].

Then | o5 +{ul]| = | los+951]| = Jim lles + 951 = Jim (g +950) = lim a1+ Jim g1l =

ez + s
Hence, [w]]H = lim ||a;| is indeed a norm in the linear space X.

j—o0

Step 7 Finally, we will show that X = Z |y is complete with respect to the norm H [;] H = lim ||zl
J]—00
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Theorem 4.5. X is complete with respect to the previously defined norm |||

Proof: Consider a sequence of equivalent classes of Cauchy sequences, [m?] We want to show there is
at least one [z;] in X = Z |y such that [z}] — [2;] as n 1 0.

Aside: [x;L] is a sequence of sequences, that is:

(171-)1'21 = ($%,$%,$§, o )
(#7)j>1 = (a1, 23,23, )
(xj)jzl = (:v‘i’,x%,x% o )

each of these are Cauchy sequences.

(33}”)]‘21 = (‘T71n7x72n’x§n7 )

J
n,m > M. That is, hIIl Hz? - 337” <e
j—o0

Then [(2)] is Cauchy if for any € > 0 there is at least one My such that H[(x?)] - [(;v;")]H < € for any

Returning to our proof, we want to show that [2] — [z;] . That is, lim lim HSE? —zj|| = 0.
n—00 j—00
(1) Pick [z7] Cauchy. So, for any € > 0 there is a Ny such that H[mgl] - [xgn]‘ = 715{)10 Hx? - xg’“H <e

for every n,m > Nj.
Now, fix p=1,2,3--- and put € = 5. Then there is n(p) such that H[m"] — [z™]|| < 551 for

n,m > n(p).

Notice without loss of generality, we can assume that n(p) < n(p + 1).

: n(p) m 1
SO7 jllH)lonJ 7xj S 2p+1-
”(p) —gm

Now, for m = n(p + 1), there is an integer R(n(p),m) such that, |z; T < % for j >

R(n(p), m).

T

4.2 Problems from Section 4

Problem 4.6. Prove Theorem 3.31.
Problem 4.7. Show Ezample 4.1 is not complete.

Problem 4.8. Show Example 4.2 is not a complete.
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