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1 Linear Spaces: Definition, Examples and Linear Span

1.1 Linear Spaces

Definition 1.1 (Field). A field is a set K, containing at least two elements, on which the addition and
multiplication are defined as usual, such that for each pair of elements x, y in K the elements x+ y and xy
are also in K.

Aside: In general, when we speak of sets, we refer to nonempty sets unless otherwise specified.

Definition 1.2 (Linear Space). X is linear space over a field K, if X is a set equipped with two operations,
addition and scalar multiplication defined as follows:

If x and y are elements of a linear space X, then x + y is also an element in X. The operation + has the
following properties:

+ is commutative:
x+ y = y + x (1)

+ is associative: for elements x, y, z in X,

x+ (y + z) = (x+ y) + z (2)

X is a group. That is, there exists an additive identity element, denoted 0, in X such that

0 + x = x (3)

and there is an additive inverse element of x, denoted as −x, in X such that

− x+ x = 0 (4)

For an element x belonging to a linear space X, α · x also belongs to X. The operation · has the following
properties:

· is associative:
(α · β) · x = α · (β · x) (5)

· is distributive:
(α+ β) · x = α · x+ β · x (6)

and
α · (x+ y) = α · x+ α · y (7)

The neutral element represented by 1 is the element of the field K such that

1x = x (8)

For convenience, we suppress · and simply write αx.

The finite-dimensional linear spaces are dealt with in courses on linear algebra. These lectures emphasize
linear spaces that are not finite-dimensional.

Unless stated otherwise, the field K will be either real numbers R or complex numbers C.
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Property 1.3 (Properties of Linear Spaces).

1. For 0 in K and x in X, 0x = 0 is also in X.
Proof:

0x = (0 + 0)x = 0x+ 0x Eq. (6)

− 0x+ 0x = −0x+ 0x+ 0x Eq. (4)

0 = 0x.

2. For x and −x in X, −1x = −x.
Proof:

0 = 0x = (−1 + 1)x = −1x+ 1x = −1x+ x Eq. (6)

0 +−x = −1x+ x+−x Eqs. (3) and (4)

−x = −1x.

Example 1.4 (Examples of Linear Spaces).

1. X = {p(t) : polynomial t ∈ R} and K = R.

Solution. Notice that the sum and scalar multiple of polynomials are still polynomials. That is, the
space {p(t) : polynomial t ∈ R} and K = R is a linear space.

2. RN and X = C(RN ) as the space of continuous functions and K is either the complex plane or the set
of real numbers.

Solution. Fix some interval [a, b] such that −∞ < a < b < ∞. Pick two functions, say u : [a, b] 7→ R
and v : [a, b] 7→ R.
Now, for u, v ∈ C[a, b] and α ∈ R, put (u+v)(x) = u(x)+v(x) and (αu)(x) = αu(x) for any x ∈ [a, b].

Notice that the sum and scalar product of continuous functions on the same domain are again contin-
uous. That is, (u+ v)(x) and (αu)(x) are also in C[a, b].

Hence, C[a, b] is a linear space.

3. X = {(aj)j≥1 = (a1, a2, · · · ) : aj ∈ K} and K is either the complex plane or the set of real numbers.

Solution. Notice that the sum and scalar product of elements of the complex plane are also in the
complex plane. Hence, {(aj)j≥1 = (a1, a2, · · · ) : aj ∈ K} is a linear space.

4. A sigma field (Ω,F , µ) and X = Lp = {f : Ω 7→ R :
∫
Ω
|f |p dµ < ∞} and K = R.

Fix p and pick functions f and g from {f : Ω 7→ R :
∫
Ω
|f |p dµ < ∞}. Notice that |f + g|p ≤

|f |p + |g|p and α |f |p ≤ |αf |p. That is,
∫
Ω
|f + g|p dµ ≤

∫
Ω
|f |p dµ+

∫
Ω
|g|p dµ < ∞ and α

∫
Ω
|f |p dµ ≤∫

Ω
|αf |p dµ < ∞ for any α ∈ K.

Example 1.5 (Examples of linear spaces from [1]).

(i) X is the space of all polynomials in a single variable s, with real coefficients, here K = R.
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(ii) X is the space of all polynomials in N variables S1, · · · , sN , with real coefficients, here K = R.

(iii) G is a domain in the complex plane, and X the space of all functions complex analytic in G, here
K = C

(iv) X = space of all vectors, x = (a1, a2, · · · ) with infinitely many real components, here K = R.

(v) Q is a Hausdorff space, X the space of all continuous real-valued functions on Q, here K = R.

(vi) M is a C∞ differentiable manifold, X = C∞(M), the space of differentiable functions on M.

(vii) Q is a measure space with measure m, X = L1(Q,m).

(viii) X = LP (Q,m).

(ix) X = harmonic functions in the upper half-plane.

(x) X = all solutions of a linear partial differential equation in a given domain.

(xi) All meromorphic functions on a given Riemann surface; K = C.

1.1.1 Linear Subspaces

Definition 1.6 (Linear Subspace). For a linear space X over a field K , Y ⊆ X is a linear subspace (also
called a sub-linear space) if x and y are in Y and α in K, then αx+ y is also in Y .

Remark 1.7. The additive identity element, 0, of X is an element a subspace Y of linear space X and is
also the additive identity element of Y .

Proof: Consider an element y in Y . Put α = −2. Then −2 · y + y = −y is an element of Y . Put α = −1,
then −1 · y + y = 0 is an element of Y . Finally, put α = 1, then 1 · y + 0 = y is an element of Y .

Definition 1.8. If A and B are subsets of linear subspace Y of linear space X, the for α and β in K, the
set αA+ βB is defined as αA+ βB = {z ∈ X : z = αx+ βy, for x ∈ A, y ∈ B}.

Property 1.9 (Properties of Linear Subspaces).

1. {0} and X are linear subspaces of X.

Solution.

(a) Notice that 0 = α0 + 0, for any α ∈ K. Hence, {0} is a sublinear space.

(b) It is clear that X ⊆ X. Since X is a linear space, we have that X is also a sublinear space of X.

2. The sum of any collection of subspaces is a subspace.

Proof: Notice, if Y1 and Y2 are linear subspaces, then Y1 + Y2 = {x + y : x ∈ Y1 and y ∈ Y2} is also
a linear subspace. Consider two arbitrary elements x and y in Y1 + Y2 and α in K. Notice by the
definition of Y1 + Y2, we have x = x1 + x2 and y = y1 + y2 where x1 and y1 are in Y1 and x2 and y2
is in Y2. Furthermore, notice, αx1 + y1 ∈ Y1 and αx2 + y2 ∈ Y2, since Y1 and Y2 are linear subspaces.

Then,

(αx1 + y1) + (αx2 + y2) = αx1 + αx2 + y1 + y2

= α(x1 + x2) + (y1 + y2)

= αx+ y ∈ Y1 + Y2.
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By induction we can show that
∑

i∈I Yi of any collection of linear subspaces, {Yi : i ∈ I} is also a
linear subspace.

3. Assume there is a family of linear subspaces of X denoted {Yθ : θ ∈ I}. Then Y =
⋂

θ∈I Yθ is also a
linear subspace.

Proof: Fix x and y in Y =
⋂

θ∈I Yθ, then x and y are in a fixed Yθ. Since Yθ is a sub-linear space, we
have that αx+ y in is Yθ. Since θ was arbitrary, it holds that αx+ y in is every Yθ for θ ∈ I. Hence
αx+ y ∈

⋂
θ∈I Yθ.

Definition 1.10 (Totally Ordered). {Yθ : θ ∈ I} is totally ordered if θ1 and θ2 in I then Yθ1 ⊆ Yθ2 or
Yθ2 ⊆ Yθ1 .

4. For a totally ordered family of sub-linear spaces {Yθ : θ ∈ I}, we have that
⋃

θ∈I Yθ is also a linear
sub-space.

Proof: Consider x and y in the totally ordered family of sub-linear spaces
⋃

θ∈I Yθ, then there exists
θ1 and θ2 such that x ∈ Yθ1 and y ∈ Yθ2 . Since the family of sub-linear spaces are totally ordered, we
have either Yθ1 ⊆ Yθ2 or Yθ2 ⊆ Yθ1 . Without loss of generality, assume that x ∈ Yθ1 ⊆ Yθ2 So both x
and y are in Yθ2 . Since Yθ2 is a sub-linear space, we have that αx+y in is Yθ2 . Hence αx+y ∈

⋃
θ∈I Yθ.

1.2 Linear Spans

Definition 1.11 (Linear Span). For a family of linear subspaces of X, {Yθ : θ ∈ I}, over a field K, consider
a set S ⊆ Yθ for each θ ∈ I. The Linear Span of S, denoted LS(S), is LS(S) =

⋂
θ∈I Yθ.

Property 1.12 (Properties of Linear Spans). LS(S) is the smallest linear space that contains S.

Proof: Recall from Property 1.9 that LS(S) is a linear subspace.

Now, suppose {Yθ : θ ∈ I} is a collection of linear subspaces of X such that S ⊆ Yθ for each θ ∈ I. Notice
that Yθ ⊇ LS(S) =

⋂
θ∈I Yθ. Since Yθ was arbitrary, it follows that any linear subspace that contains S

must also contain LS(S). That is, LS(S) is the smallest linear space that contains S.

Theorem 1.13 (Linear Span). For a linear space X over a field K and a set S ⊆ X, linear span of S,
LS(S), consists of all possible linear sums of elements of S. That is

LS(S) =


n∑

j=1

αjxj : αj ∈ K, xj ∈ S, n is any natural number

 (9)

Proof: Put Z =
{∑n

j=1 αjxj : αj ∈ K, xj ∈ S, n is any natural number
}
. We want to show that LS(S) =

Z.

In particular, we want to show:

1. Z contains S, and
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2. Z is a linear subspace.

If Z is a linear subspace that containing S then by Property 1.12, we will have Z ⊇ LS(S).

Finally, we will show

3. If Y is an arbitrary linear subspace that contains S, then Y ⊇ Z.

Now,

1. Z contains S is clear, since if we take any element of S, say x. Then x = 1x is of the form Eq. (9).
Hence Z contains S.

2. Pick z1, z2, in Z and α in K. Then z1 =
∑N1

j=1 αjxj for αj ∈ K, xj ∈ S, and z2 =
∑N2

j=1 βjyj for
βj ∈ K, yj ∈ S.

Now, without loss of generality for N2 ≥ N1, we have

αz1 + z2 =
∑N1

j=1 ααjxj +
∑N2

j=1 βjyj =
∑N1

j=1(ααjxj + βj) +
∑N2−N1

j=1 βjyj .

Notice that each ααj belongs to K. Since
∑N1

j=1(ααjxj +βj)+
∑N2−N1

j=1 βjyj is of the form Eq. (9), we
have that αz1 + z2 ∈ Z. Hence, Z is a linear space.

Therefore by Property 1.12, we have Z ⊇ LS(S)

3. Consider an arbitrary linear subspace Y ⊇ S and pick z ∈ Z. By definition of Z, z =
∑n

j=1 αjxj for
some n ∈ N. Since Y is a linear subspace which contains S, we have each αjxj ∈ Y . Furthermore,∑N

j=1 αjxj is an element of Y , since it is a linear combination of elements of S. Hence Y ⊇ Z.

So, we have shown that for any linear subspace Y which contains S, we have that Y ⊇ Z. But by Prop-
erty 1.12, LS(S) is the smallest linear subspace containing S. Hence, Z = LS(S).

Remark 1.14 (Remark 1 from [1]). An element x of the form in Eq. (9) is called a linear combination of
the points x1, · · · , xn of elements of S. So Theorem 1.13 can be restated as follows:

The linear span of a subset S of a linear space X consists of all linear combinations of elements of S [1].

1.3 Problems from Section 1

Problem 1.15. Prove the first part of Property 1.9.

Problem 1.16. Show that each Example 1.4 are linear spaces.

Problem 1.17. Show that each Example 1.5 are linear spaces.

2 Linear Spaces: Quotient Spaces and Convex Sets

2.1 Quotient Spaces

Definition 2.1 (Equivalent modulo). For a linear subspace Y of linear space X over a field K , we introduce
a relation, (∼), between two elements of X . Two arbitrary elements in X, say x, y, are equivalent modulo,
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denoted x ∼ y, if x− y is also in Y .

Claim 2.2. The relation (∼) is an equivalence relation.

Proof: Suppose Y is a linear subspace of a linear space X.

x ∼ x (Reflexive). (10)

Pick an arbitrary element of X, say x. Since X is a linear space, we have −x is also in X. Then, we have
−x+ x = x− x = 0 is in Y by definition of Y . Hence x ∼ x.

If x ∼ y, then y ∼ x (Symmetric). (11)

Suppose (x− y) is an element of Y . Then have −1(x− y) = −x+ y = (y − x) is also an element of Y , since
Y is a linear subspace. Hence, if x ∼ y, then y ∼ x.

If x ∼ y and y ∼ z, then x ∼ z (Transitive). (12)

Suppose (x−y) and (y−z) are elements of Y . Since Y is a linear subspace. We have (x−y)+(y−z) = (x−z)
is also an element of Y . Hence, if x ∼ y and y ∼ z, then x ∼ z.

Hence, by Eqs. (10) to (12) ∼ is an equivalence relation.

We can divide the linear space X into distinct equivalence classes modulo linear subspace Y . We denote this
set of equivalence classes as X |Y or X mod Y .

Definition 2.3 (Quotient Space). For x, y in a linear space X, and a sublinear space Y , we define the
following:

1. [x] = {y ∈ X : x ∼ y} = {y ∈ X : (x − y) ∈ Y }. That is for x ∈ X, [x] represents all the elements of
y ∈ X such that the linear combination (x− y) ∈ Y .

2. We represent the Quotient Space of X modulo Y as X |Y = {[x] : x ∈ X}. That is X |Y is the set of
all equivalence classes of elements of X.

Remark 2.4. From Definitions 2.1 and 2.3 it is clear that any representative from an equivalence class can
be used to denote that equivalence class. That is, for any element z ∈ [x], [z] = [x].

Proof: Pick z ∈ [x]. Then (z − x) ∈ Y . Since Y is a linear subspace, −1(z − x) = x− z is also an element
of Y . That is x ∈ [z]. Hence, [x] ⊆ [z]. By symmetry, [x] ⊇ [z]. Thus, [z] = [x], for any z ∈ [x]

For X |Y to be a linear space, we need to define the sums as well as scalar multiplication of elements of
X |Y , denoted [x] + [y] and α[x] respectively, for elements [x], [y] ∈ X |Y and α ∈ K such that both [x] + [y]
and α[x] are in X |Y .

Claim 2.5 (+). Notice that both [x] and [y] are subsets of the linear space X. Put [x] + [y] = [x+ y]. Then
the operation [x] + [y] = [x+ y] is well-defined.

Proof: To show (+) is well-defined, we will show that for x1, x2 in [x] and y1, y2 in [y], we have [x1 + y1] =
[x2 + y2].



Functional Analysis 8

1. Suppose x1, x2 ∈ [x] and y2, y2 ∈ [y]. Then, from the definition of [x] and [y], we have (x1 − x), (x2 −
x), (y1 − y), (y2 − y) are elements of Y . Hence, by Claim 2.2, we have that (x2 − x1), (y2 − y1) are also
elements of Y .

2. Now, pick an arbitrary z from [x1 + y1], we want to show that z is also in [x2 + y2].

Notice that z − (x1 + y1) is an element of Y by the definition of [x1 + y1]. But Y is a linear space, so
we have

z − (x1 + y1) = z − (x1 + x2 − x2 + y2 − y2 + y1) (13)

= z − (x2 + y2) + (x2 − x1) + (y2 − y1) is an element of Y.

Furthermore, since (x2 − x1), (y2 − y1) are elements of the linear subspace Y from (1), we have(
z − (x1 + y1)

)
− (x2 − x1)− (y2 − y1) = z −

(
(x2 + y2) + (x2 − x1) + (y2 − y1)

)
− (x2 − x1)− (y2 − y1)

= z − (x2 + y2) is an element of Y.

In particular, z ∼ (x2 + y2). Thus, [x1 + y1] ⊆ [x2 + y2]. Furthermore, by symmetry, the converse is
also true. That is, [x1 + y1] = [x2 + y2].

Hence, [x+ y] = [x+ y] is well-defined.

Claim 2.6 (·). For an arbitrary element from X, say x, and α ∈ K, put α[x] = [αx]. The operation
α[x] = [αx] is well-defined.

Proof: To show (·) is well-defined, we will show that for x1, x2 in [x] and α ∈ K, we have [αx1] = [αx2].

1. Suppose x1, x2 ∈ [x]. Then (x1 − x), (x2 − x) ∈ Y . Since, Y is a linear subspace, (x1 − x)− (x2 − x) =
(x1 − x2) is also in Y .

2. Pick an arbitrary element z from [αx1]. Then z − αx1 ∈ Y . Since Y is a linear subspace, z − αx1 −
α(x1−x2) = z−αx2 is also in Y . That is z ∈ [αx2]. Hence, [αx1] ⊂ [αx2]. By symmetry, [αx1] ⊃ [αx2].
That is, [αx1] = [αx2].

Hence, α[x] = [αx] is well defined.

2.2 Linear Maps

As with all algebraic structures, linear structures we have the concept of isomorphism.

Definition 2.7 (Linear Maps). For a linear spaces X∗, X over a field K, the mapping T : X 7→ X∗ is a
linear map if:

1. T (x+ y) = T (x) + T (y), and

2. αT (x) = T (αx), for α ∈ K

Definition 2.8 (Isomorphism). X and X∗ are isomorphic if there exists a linear map T : X 7→ X∗ which
is a bijection.
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For a fixed linear map T : X 7→ X∗ , we have the following claims:

Claim 2.9. For a linear subspace Y of linear space X over a field K , T (Y ) = {T (x) : x ∈ Y } is a linear
subspace.

Proof: To show that T (Y ) is a linear map, we want to show that for α ∈ K and elements z1 and z2 in T (Y ),
we have that αz1 + z2 is also an element of T (Y ).

Notice, if α in K and z1 and z2 in T (Y ), there are elements x1 and x2 in Y such that T (x1) = z1 and
T (x2) = z2. Since Y is a linear subspace, we have αx1 + x2 is in Y . Hence T (αx1 + x2) in T (Y ). But T is
a linear map, so T (αx1 + x2) = αT (x1) + T (x2) = αz1 + z2.

Hence, αT (x1) + T (x2) = αz1 + z2 is an element of T (Y )

Claim 2.10. For a linear subspace Y ∗ of linear space X∗ and another linear space X both over a field K.
Denote T−1(Y ∗) as the inverse image of the previously fixed linear map T .

That is, T−1(Y ∗) = {x ∈ X : T (x) ∈ Y ∗}. Then, T−1(Y ∗) is a linear subspace.

Proof: Consider two arbitrary elements, z1 and z2 in T−1(Y ∗).

Notice, by definition of T−1, we have that T (z1) and T (z2) are elements of Y ∗. Then, by linearity of T , we
have T (αz1 + z2) = αT (z1) + T (z2) is an element of Y ∗, since Y ∗ is a linear subspace.

In particular αz1 + z2 is in T−1(Y ∗).

2.3 Convex Sets

A very important concept in a linear space over the reals is convexity.

Definition 2.11 (Convex Sets). For a linear space X over a field K = R, a subset K ⊆ X is said to be
convex if for any two elements x and y in K and α ∈ [0, 1], we have αx+ (1− α)y is in K.

Example 2.12. Examples of convex sets in the plane are (1) circular disk, (2) triangle, and (3) semicircular
disk.

Solution (Example 2.12).

1. Without loss of generality, fix a circle with radius r centred at (0, 0) on the R2-plane. Then for
any element in this circle is of the form |x| ≤ r. Now, Pick two arbitrary ordered pairs from this
circle, say P1(x1, y1) and P2(x2, y2). A convex combination of those elements is αP1 + (1 − α)P2 =(
αx1 + [1 − α]x2, αy1 + [1 − α]y2

)
. Since |x| ≤ r we have

∣∣∣αx1 + [1 − α]x2

∣∣∣ ≤ r. That is the convex

combination of any two elements in a circle is also an element of the same circle.

Claim 2.13 (Convex Combination). If K is convex, x1, · · · , xN in K and α1, · · · , αN in [0, 1] such that∑N
j=1 αj = 1, then

∑N
j=1 αjxj is also in K.

The above is called a convex combination of elements of K.

Proof: Notice that x = 1x+0x and αx+(1−α)y are convex by Definition 2.11 when α ∈ [0, 1] for arbitrary
elements x, y in convex set K.
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Suppose that linear combinations of the form
∑N

j=1 αjxj are in the convex set K.

A convex combination of arbitrary elements x1, · · · , xN+1 of K is
∑N+1

j=1 βjxj , for β ∈ [0, 1].

Now,

N+1∑
j=1

βjxj =

N∑
j=1

βjxj + βN+1xN+1.

Notice that βN+1 = 1−
∑N

j=1 βj .

Then we have,

N+1∑
j=1

βjxj =

N∑
j=1

βjxj +

1−
N∑
j=1

βj

xN+1

=

N∑
j=1

βj

 1∑N
j=1 βj

N∑
j=1

βjxj

+

1−
N∑
j=1

βj

xN+1

Since
∑N

j=1 βjxj is an element in convex set K by inductive hypothesis, and 1∑N
j=1 βj

is an element of the

field R, we have
∑N+1

j=1 βjxj is indeed an element of the convex set K.

Theorem 2.14. Let X be a linear space over the reals.

(i) The empty set is convex.

Proof: This is vacuously true.

In any case, suppose otherwise. Suppose that ∅ is not convex. Then there are elements x and y in ∅
such that αx+ (1−α)y is not in ∅. However, this is a contradiction, since there are no elements in ∅.
Hence, the empty set is convex.

(ii) A subset consisting of a single point is convex.

Proof: Suppose x is the only element in some subset K of the linear space X. Notice that x =
x(α+ 1− α) = αx+ (1− α)x. Hence, a subset consisting of a single point is convex.

(iii) Every linear subspace of X is convex.

Proof: Pick an arbitrary linear subspace of X, say K. Then by the definition of a linear subspace, for
any two arbitrary elements x and y in K, we have that αx+ (1− α)y is also an element of K. Since
K was an arbitrary linear subspace of X, we have that every linear subspace of X is convex.

(iv) The sum of two convex subsets is convex.

Proof: A convex combination of two elements, z1 and z2 in the set K1 +K2 is z = αz1 + (1 − α)z1,
for α ∈ [0, 1] We want to show that z is also an element of the set K1 +K2.
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Now,

z = αz1 + (1− α)z1 = α(x1 + x2) + (1− α)(y1 + y2) for x1, y1 ∈ K1 and x2, y2 ∈ K2

=
(
αx1 + (1− α)y1

)
+

(
αx2 + (1− α)y2

)
Since K1 is a convex subset, for elements x1, y1 in the set K1, αx1 + (1 − α)y1 is also an element of
K1. Similarly, since K2 is a convex subset, for elements x2, y2 in the set K2 we have αx2 + (1− α)y2
is also an element of K2.

Hence, z = αz1 + (1− α)z1 is also an element of the set K1 +K2.

(v) If K is convex, so is −K.

Proof: An arbitrary convex combination of elements from −K, is z = α(−x)+(1−α)(−y) for elements
x, y ∈ K. We want to show that z is also an element of −K

But this is clear, since z = −
(
α(x) + (1− α)(y)

)
, and αx+ (1− α)y is an element of a convex set K.

(vi) The intersection of an arbitrary collection of convex sets is convex.

Proof: Suppose that {Kθ : θ ∈ I} is any collection of convex subsets of linear space X. Then a convex
combination of elements from ∩θ∈IKθ is z = αx+ (1− α)y, for elements x, y in ∩θ∈IKθ. We want to
show that z is also an element of ∩θ∈IKθ.

But this is clear, since x, y is an element of a particular Kθ0 . Since, Kθ0 is a convex subset, we have
that αx+(1−α)y is also an arbitrary element of Kθ0 . But θ0 was arbitrary. Hence the previous much
be true for any θ0 ∈ I. Hence, z = αx+ (1− α)y is also an element of ∩θ∈IKθ.

(vii) Let Kj be a collection of convex subsets that is totally ordered by inclusion. Then their union
⋃
Kj is

convex.

Proof: Suppose that {Kθ : θ ∈ I} a totally ordered collection of convex subsets of linear space X. Then
a convex combination of elements of

⋃
θ∈I Kθ is z = αx1 + (1 − α)x2 for x1 in Kθ1 and x2 in Kθ2 .

Without loss of generality, suppose that Kθ1 ⊆ Kθ2 . Then it is clear that x1 in also an element of Kθ2 .
Since Kθ2 is a convex subset, we have that z = αx1 + (1− α)x2 is also an element of K2. Hence, z is
an element of

⋃
θ∈I Kθ.

(viii) The image of a convex set under a linear map is convex.

Proof: Fix a linear map T , such that T : X 7→ X∗, where X and X∗ are linear spaces.

Now, a convex combination of elements of X∗ is z = αz1 + (1− α)z2 from elements z1 and z2 in X∗.
Then z = αT (x) + (1− α)T (y) for elements x, y in X. Then by Definition 2.7, we have αT (x) + (1−
α)T (y) = T

(
x+ (1−α)y

)
. Since x+ (1−α)y is in the convex set X, we have that z is an element of

X∗.

(ix) The inverse image of a convex set under a linear map is convex.

Proof: Since the inverse image of a convex set under a linear space by Claim 2.10, we can apply (iii)
to show that indeed, the inverse image of a convex set under a linear map also a convex set.
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Property 2.15 (Convex Sets). For a linear space X over a field K where K = R

1. If Y is a linear subspace of X, then Y is convex.

Proof: Pick arbitrary x1 and x2 in Y , α in [0, 1]. Since Y is linear, αx1 + (1− α)x2 is in Y .

Hence Y is convex.

2. For two convex subsets, Y1 and Y2 of X, Y1 + Y2 is also convex.

Proof: Pick arbitrary elements z1 and z2 of Y1 + Y2, and α between [0, 1]. Notice that z1 = x1 + y1,
and z2 = x2 + y2, where x1, x2 in Y1 and y1, y2 in Y2.

Consider αz1 + (1− α)z2 = α(x1 + y1) + (1− α)(x2 + y2) = αx1 + (1− α)(x2) + αy1 + (1− α)(y2).

Notice that αx1 + (1−α)(x2) is in Y1 and αy1 + (1−α)(y2) is in Y2, since Y1 and Y2 are convex sets.

In particular, αz1 + (1−α)z2 = α(x1 + y1) + (1−α)(x2 + y2) is in Y1 + Y2. Hence, Y1 + Y2 is convex.

3. For a family of convex sets of X, say Kθ for θ ∈ I. Put K =
⋂

θ∈I Kθ, then K is also convex.

Proof: Pick x and y from K and α in [0, 1] and fix θ in I. Notice x and y are also in Kθ. Since Kθ

is convex, we have αx+ (1− α)y is in Kθ.

Since θ was arbitrary, the previous must be true for any θ in I. That is, αx+ (1− α)y is in K.

Hence, K is convex.

4. Consider a family of totally ordered convex sets of X, say Kθ for θ ∈ I. Recall Definition 1.10.
Without loss of generality, assume that Kθ1 ⊆ Kθ2 . Put K =

⋃
θ∈I Kθ, then K is also convex.

Proof: Pick x and y from K and α in [0, 1], then there exists θ1 and θ2 such that x in is Kθ1 and y
in is Kθ2 .

Since, Kθ1 ⊆ Kθ2 , we have that x is also in Kθ2 . Since Kθ2 is a convex set, we have, αx+ (1− α)y is
in Kθ2 . In particular, since Kθ2 ⊆ K, we have that αx+ (1− α)y is in K.

Hence, K is convex.

5. Fix a linear map, say T : X 7→ Y . For a convex K ⊂ X, T (K) is also convex.

Proof: Pick z1 and z2 from K and α in [0, 1], then there exists x1 and x2 in K such that T (x1) = z1
and T (x2) = z2.

Since K is a convex set, we have that αx1 + (1− α)x2 is in K, hence T (αx1 + (1− α)x2) is in T (K).

Since T is a linear map, we have T (αx1+(1−α)x2) = αT (x1)+T ((1−α)x2). In particular αT (x1)+
T ((1− α)x2) = αz1 + (1− α)z2 is in T (K).

Hence, T (K) is convex.

6. Fix a linear map, say T : X 7→ Y . For a convex K ⊂ Y , T−1(K) is also convex.

Proof: Pick x1 and x2 from T−1(K) and α in [0, 1], then there exists T (x1) and T (x2) from K.

Since K is convex, we have αT (x1) + T ((1− α)x2) is in K.

Since T is a linear map, we have that αT (x1) + T ((1− α)x2) = T (αx1 + (1− α)x2) is in K.

In particular, αx1 + (1− α)x2 is in T−1(K).

Hence, T−1(K) is convex.
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2.3.1 Convex Hull

Definition 2.16. For any subset S of linear space X over a field K = R, where S is not necessarily convex,
consider a family of convex sets, Kθ ⊇ S. We define that convex hull of a set S as cu(S) =

⋂
θ∈I Kθ.

Theorem 2.17.

(i) The convex hull of S is the smallest convex set containing S.

(ii) The convex hull of S consists of all convex combinations of points of S.

Claim 2.18. cu(S) =
⋂

θ∈I Kθ is the smallest convex set which contains S. That is,

1. cu(S) is convex,

2. cu(S) contains S, and

3. If K is another set that contains S, then K ⊇ cu(S)

Proof:

1. Recall by Property 2.15 that cu(S) =
⋂

θ∈I Kθ is a convex set.

2. Notice that each S ⊆ Kθ. In particular S ⊆
⋂

θ∈I Kθ.

3. Suppose S ⊆ K, Since K is one of Kθ, we have that cu(S) ⊆ K. That is, cu(S) =
⋂

θ∈I Kθ is the
smallest convex set which contains S.

Claim 2.19. cu(S) =
{∑n

j=1 αjxj : xj ∈ S, αj ∈ [0, 1],
∑n

j=1 αj = 1, n is any natural number
}

Proof:

1. Put Z =
{∑n

j=1 αjxj : xj ∈ S, αj ∈ [0, 1],
∑n

j=1 αj = 1, n is any natural number
}
.

It is clear that S ⊆ Z, since if we take any element from S, say s, it can be written in the form
∑1

j=1 αs,
for α = 1. In particular, s is also an element of Z.

Pick z1 and z2 in Z and α in [0, 1]. Notice that z1 =
∑N

j=1 αjxj and z2 =
∑M

j=1 βjyj .

Now, αz1 + (1− α)z2 = α
∑N

j=1 αjxj + (1− α)
∑M

j=1 βjyj .

Notice, each xj and yj are elements of S. Furthermore, the sum, α
∑N

j=1 αj +(1−α)
∑M

j=1 βj = 1 , we
have that αz1 +(1−α)z2 is a convex combination of elements of S. In particular, αz1 +(1−α)z2 ∈ Z.
Therefore, Z is a convex set.

Hence, Z is a convex set containing S, by Claim 2.18 Z also contains cu(S).

2. Suppose K is another convex set containing S. Then from above, K must contain all convex combina-
tions of elements of S. But, by the definition of Z, Z only convex combinations of elements of S. That
is, K contains Z. Hence Z is the smallest convex set containing S.

By (1) and (2), we have that cu(S) = Z. That is, the convex hull of S consists of all convex combinations of
points of S.
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Definition 2.20 (Extreme Subset from [1]). A subset E of a convex set K is called an extreme subset if:

1. E is convex and nonempty, and

2. whenever a point x of E is expressed as

x =
y + z

2
y, z in K

then both y and z belong to E.

An extreme subset consisting of a single point is called an extreme point of K.

Example 2.21 (Example from [1]). K is the interval 0 ≤ x ≤ 1; the two endpoints are extreme points.

Example 2.22 (Example from [1]). K is the closed disk, x2 + y2 ≤ 1. Every point on the circle x2 + y2 = 1
is an extreme point.

Example 2.23 (Example from [1]). The open disk, x2 + y2 < 1 has no extreme points.

Example 2.24 (Example from [1]). K a polyhedron, including faces. Its extreme subsets are its faces, edges,
vertices, and of course K itself.

Now, we introduce some useful theorems.

Theorem 2.25 (Theorem from [1]). Let K be a convex set, E an extreme subset of K, and F an extreme
subset of E. Then F is an extreme subset of K.

Theorem 2.26 (Theorem from [1]). Let M be a linear map of the linear space X into the linear space U .
Let K be a convex subset of U , E an extreme subset of K. Then the inverse image of E is either empty or
an extreme subset of the inverse image of K.

By taking U to be one dimensional, we have the following corollary of Theorem 2.26:

Corollary 2.27 (Corollary from [1]). Denote by H a convex subset of a linear space X, l a linear map of
X into R, Hmin and Hmax the subsets of H, where l achieves its minimum and maximum, respectively.

Claim 2.28 (Claim from [1]). When nonempty, Hmin and Hmax are extreme points.

2.4 Problems from Section 2

Problem 2.29. Prove Claim 2.6.

Problem 2.30. Show that each Example 2.12 is a convex set.

Problem 2.31. Prove Claim 2.13 by induction with the base case N = 2

Problem 2.32. Prove Theorem 2.14.

Problem 2.33. Prove Theorem 2.17.

Problem 2.34. Prove all claims from Examples 2.21 to 2.24.

Problem 2.35. Prove Theorem 2.25.

Problem 2.36. Prove Theorem 2.26.

Problem 2.37. Prove Corollary 2.27 as well as Claim 2.28.
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3 Normed Linear Spaces: Definition and Basic Properties

3.1 Normed Linear Space

Definition 3.1 (Normed Linear Space). Consider a linear space represented by X and a field K which will
be either R or C, we say that a norm represented by N is a function from X 7→ R+ with the following
properties:

1. N(x) is nonnegative and N(x) = 0 ⇐⇒ x = 0 for any x in X (definiteness),

2. for all α in K and for any x in X, N(αx) = |α|N(x) (homogeneity),

3. for any two elements in X, say x and y, we have N(x+ y) ≤ N(x) +N(y) (Subadditivity).

A normed linear space is a linear space equipped with a norm as defined above. For convenience, we
represent N(x) as ∥x∥.

Before we proceed, we have two claims:

Claim 3.2. For x in X, we have ∥−x∥ = ∥x∥

Proof: This is clear, since ∥−x∥ = |−1| ∥x∥ = ∥x∥.

Remark 3.3. It follow from Definition 3.1 for elements x, y, z in a normed linear space X that,∥∥∥(x+ y) + z
∥∥∥ ≤ ∥x+ y∥+ ∥z∥ ≤ ∥x∥+ ∥y∥+ ∥z∥ .

Furthermore, by induction, we have, ∥∥∥∥∥∑
i∈I

xi

∥∥∥∥∥ ≤
∑
i∈I

∥xi∥ for xi ∈ X

Claim 3.4. For two elements of X, say x and y, we have that
∣∣∣∥x∥ − ∥y∥

∣∣∣ ≤ ∥x− y∥

Proof: Notice that ∥x∥ = ∥x− y + y∥. From the definition of a norm , we have that ∥x∥ = ∥x− y + y∥ ≤
∥x− y∥+ ∥y∥. Therefore, ∥x∥ − ∥y∥ ≤ ∥x− y∥.

Furthermore, we have that ∥y∥ − ∥x∥ ≤ ∥y − x∥ = ∥x− y∥ by Claim 3.2. The proof follows.

Definition 3.5 (Distance). Consider a function d : X × X 7→ R+, we define the distance between two
elements of X, say x and y as d(x, y) = ∥y − x∥. By Definition 3.1 and Claims 3.2 and 3.4 the following
properties hold:

1. d(x, y) ≥ 0 and d(x, y) = 0 if y = x.

2. d(x, y) = d(y, x).

3. d(x, z) ≤ d(x, y) + d(y, z)
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The following is a path of concepts which you will be familiar with:

(∥x∥)→(distance)→(topology)→(sequences xn → x ∈ R ⇐⇒ ∥xn − x∥ → 0)→(open, closed and compact
sets). These concepts will play an important role in the theory of linear spaces.

We can now discuss metrics which are equivalent.

Definition 3.6 (Equivalent Metrics). For a linear space X and two different norms, say ∥·∥1 and ∥·∥2, the
two norms ∥·∥1 and ∥·∥2 are equivalent if there exists 0 < c < ∞ such that for any x in X, c ∥x∥1 ≤ ∥x∥2 ≤
1

c
∥x∥1.

Claim 3.7. For a linear space X and a given norm ∥·∥. If Y ⊆ X linear subspace, then Y equipped with
∥·∥ is a new normed linear space.

Proof: This is clear, since Y is a linear subspace of X. Hence, by Definition 3.1 we have that Y is a new
normed linear space.

Claim 3.8 (Product Space). For linear spaces X1 equipped with ∥·∥1 and X2 equipped with ∥·∥2, we definition
a new space, X1 × X2 = {(x1, x2) : x1 ∈ X1, x2 ∈ X2}. Notice that X1 × X2 is a linear space. Scalar
multiplication is defined by α(x1, x2) = (αx1, αx2). The following are three possible ways to define a norm
on X1 ×X2:

(i) ∥(x1, x2)∥ = ∥x1∥1 + ∥x2∥2.

(ii) ∥(x1, x2)∥ = max{∥x1∥1 , ∥x2∥2}.

(iii) ∥(x1, x2)∥ =
√

∥x1∥21 + ∥x2∥22.

Proof: Apply Definition 3.1 to each to show each is a norm on X1 ×X2.

We now recall some elementary definitions from Real Analysis in the context of norms:

Definition 3.9 (Sequence). A sequence of real numbers is a function from N to R. That is, for f : N 7→ R
denoted xn = f(n), we write the sequence as an ordered n-tuple (x1, x2, x3, · · · ) or more compactly (xn)n∈N.

Definition 3.10 (Convergence). For a linear space X equipped with a norm ∥·∥, the sequence (xn)n≥1

converges to an element x in X,

if for any ϵ > 0, there is at least one integer N such that for any n ≥ N we have ∥xn − x∥ ≤ ϵ.

We then write xn → x as n → ∞ or lim
n→∞

xn = x or lim
n→∞

∥xn − x∥ = 0.

Definition 3.11 (Supremum and Infimum). The Supremum of a sequence, denoted (xn)n∈N in a linear
space X, is defined as the least upper bound if such a sequence is bounded above by a real number, say x. If
(xn)n∈N is unbounded above, then we say that the supremum of the sequence equals ∞.

That is, if (xn)n∈N is an increasing sequence in R, we have,

sup {xn : n ∈ N} = lim
n→∞

xn = x

⇐⇒
∀ϵ > 0,∃xj ∈ {xn} such that xj > x− ϵ
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Similarly, the Infimum of a sequence, is defined as the greatest lower bound if such a sequence is bounded
below by a real number. If (xn)n∈N is unbounded below, then we say that the infimum of the sequence equals
−∞.

That is, if (xn)n∈N is n decreasing sequence in R, we have,

inf {xn : n ∈ N} = lim
n→∞

xn = x

⇐⇒
∀ϵ > 0,∃xj ∈ {xn} such that xj < x+ ϵ

Proposition 3.12 (from [2]). For a normed linear space X and elements xn, yn, x, y in X, αn, α in K,
the following are met:

(i) The limit point x in Definition 3.10 is uniquely determined.

(ii) If xn → x as n → ∞, then the sequence (xn) is bounded, that is, there is a number r ≥ 0 such that
∥xn∥ ≤ r for any n.

(iii) If xn → x as n → ∞, then,

∥xn∥ → ∥x∥ as n → ∞

(iv) If xn → x and yn → y as n → ∞, then

xn + yn → x+ y as n → ∞

(v) If xn → x and αn → α as n → ∞, then

αnxn → αx as n → ∞

Proof:

(i) Suppose a sequence xn to x and y. Then, 0 ≤ ∥x− y∥ = ∥x− xn + xn − y∥ ≤ ∥x− xn∥+∥xn − y∥ ≤ 0
as n → ∞. Hence, x = y.

(ii) By Definition 3.10, we have ∥xn − x∥ = 0 as n → ∞. Put M ≥ 0. Then it is clear that M is an
upper bound for ∥xn − x∥. Now, ∥xn∥ = ∥xn − x+ x∥ ≤ ∥xn − x∥+ ∥x∥ ≤ M + ∥x∥. That is, ∥xn∥ is
bounded above by r = M + ∥x∥.

(iii) From Claim 3.4, we have
∣∣∣∥xn∥ − ∥x∥

∣∣∣ ≤ ∥xn − x∥ → 0 as n → 0.

(iv) Suppose xn → x and yn → y as n → ∞. We have 0 ≤
∥∥∥(xn − yn)− (x− y)

∥∥∥ =
∥∥∥(xn −x)+ (y− yn)

∥∥∥ ≤∥∥∥xn − x
∥∥∥+

∥∥∥yn − y
∥∥∥ = 0. By Definition 3.10, the proof follows.

(v) For a sequence xn → x and αn → α as n → ∞, we have

∥αnxn − αx∥ = ∥αnxn − αxn + αxn − αx∥

=
∥∥∥(αn − α)xn + α(xn − x)

∥∥∥
=

∥∥∥(αn − α)xn

∥∥∥+ |α|
∥∥∥(xn − x)

∥∥∥ = 0 as n → ∞



Functional Analysis 18

Claim 3.13. For a linear subspace Y of linear space X over a field K and a given norm ∥·∥, denote Y as
the closure of Y . That is, Y = {x ∈ X : ∃(xn)n≥1 ∈ Y and xn → x} ∪ Y . Then,

(i) Y is a linear subspace and

(ii) Y equipped with ∥·∥ is a new normed linear subspace.

Proof:

1. Notice that we can find two sequences xn and yn in Y such that x and y are in Y . Since Y is a linear
subspace, the sequence αxn + yn in also in Y . Then by the definition of Y , there is αx+ y in Y such
that (αxn + yn) → (αx+ y) for some α ∈ K. Hence Y is a linear subspace of X.

2. Notice for two elements in Y say x, y, we have |xn − x| ≤ ϵ
2|α| and |yn − y| ≤ ϵ

2 for any ϵ > 0 and

α ∈ K. For now, suppose α ̸= 0.

Then,
∥∥∥α(xn − x) + (yn − y)

∥∥∥ =
∥∥∥(αxn + yn)− (αx+ y)

∥∥∥ ≤ |α|
∥∥∥(xn − x)

∥∥∥+
∥∥∥yn − y

∥∥∥ ≤ ϵ
2|α| +

ϵ
2 = ϵ.

The case when α = 0, is clear, since
∥∥∥α(xn − x) + (yn − y)

∥∥∥ =
∥∥∥yn − y

∥∥∥ ≤ ϵ

Example 3.14. Suppose Y is a linear subspace of X equipped with a norm ∥·∥, and Y is closed. Recall
from a previous lecture, that we defined X |Y = {[x] : x ∈ X}, where [x] = {z ∈ X : (z−x) ∈ Y }. Recall that
X |Y is a linear space where addition and multiplication by scalars is defined.

Define
∥∥∥[x]∥∥∥ = inf {∥z∥ : z ∈ [x]}. Then

∥∥∥[x]∥∥∥ is a norm in X |Y .

Proof: Two show that ∥[x]∥ is a norm in X |Y , we will show that it satisfies the three properties from Def-
inition 3.1.

Before we begin, notice that for [0] ∈ X |Y , we have [0] = {z ∈ X : (z − 0) ∈ Y } = Y .

1. ∥·∥ ≥ 0, is clear, since we are taking the infimum over nonnegative numbers. We want to show
∥[·]∥ = 0 ⇐⇒ [·] = [0].

Pick the element, say [x], from the quotient space X |Y , such that ∥[x]∥ = 0. By our definition we have,
inf {∥z∥ : z − x ∈ Y and x, z ∈ X} = 0. Notice, ∥zj∥ → 0 implies that zj → 0, since for any ϵ > 0 we

have
∣∣∣∥zj∥ − 0

∣∣∣ = ∥zj∥ = ∥zj − 0∥ ≤ ϵ for n ≥ k0.

Now, zj → 0 implies that the sequence (zj − x) → −x. Since Y is closed and (zj − x) → −x, we have
that −x ∈ Y . Furthermore, since Y is a linear space, we have that x is also an element of Y .

Claim 3.15. If x ∈ Y then [x] = [0].

Proof: We will show that if x ∈ Y then (i) [x] ⊆ [0] and (ii) [0] ⊆ [x].

(i) Pick z ∈ [x], then z − x ∈ Y . Notice that Y is a linear subspace, x ∈ Y from above, and
z − x ∈ Y , we have z = z − x + x is also in an element of Y . Since z ∈ Y , we have that
z ∈ [0] = {z : z = (z − 0) ∈ Y }. Hence, [x] ⊆ [0].
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(ii) Pick z ∈ [0]. Then (z − 0) = z ∈ Y . Since Y is a linear space and z ∈ Y , we have z − x is also in
Y . Hence, z ∈ [x]. That is, [0] ⊆ [x].

By (i) and (ii), we have if x ∈ Y then [x] = [0].

Hence, we have that
∥[·]∥ = 0 ⇐⇒ [·] = [0] (14)

2. For a scalar, α ∈ K, we want to show that
∥∥∥α · [x]

∥∥∥ = |α| ·
∥∥∥[x]∥∥∥.

(i) From Claim 2.6, we have that α[x] = [αx].

Notice,
∥∥∥[αx]∥∥∥ = inf {∥z∥ : z ∈ [αx]} by the definition of

∥∥∥[x]∥∥∥. But, inf {∥z∥ : z ∈ [αx]} =

inf {∥z∥ : z ∈ α[x]}. So we have
∥∥∥[αx]∥∥∥ = inf {∥z∥ : z ∈ α[x]}.

(ii) Assume for now α ̸= 0. Then,∥∥∥[αx]∥∥∥ = inf {∥z∥ : z ∈ α[x]} = inf
{
∥z∥ :

z

α
∈ [x]

}
But,

inf {∥z∥ : z ∈ α[x]} = inf
{
∥z∥ :

z

α
∈ [x]

}
= inf

{
|α| ·

∥∥∥∥ 1αz

∥∥∥∥ :
1

α
z ∈ [x]

}
= |α| inf

{∥∥∥∥ 1αz

∥∥∥∥ :
1

α
z ∈ [x]

}
Put 1

αz = y, then |α| inf {∥y∥ : y ∈ [x]} = |α|
∥∥∥[x]∥∥∥ by definition. That is,

∥∥∥α · [x]
∥∥∥ = |α| ·

∥∥∥[x]∥∥∥,
when α ̸= 0.

(iii) Consider α = 0. Then |α| ·
∥∥∥[x]∥∥∥ = 0, since |0| = 0. While

∥∥∥α · [x]
∥∥∥ =

∥∥∥[αx]∥∥∥ =
∥∥∥[0]∥∥∥ = 0

by Eq. (14).

Hence by (i), (ii), (iii) we have, ∥∥∥α · [x]
∥∥∥ =

∥∥∥[αx]∥∥∥ for any α ∈ K (15)

3. (i) Now, we want to show that
∥∥∥[x] + [y]

∥∥∥ ≤
∥∥∥[x]∥∥∥+

∥∥∥[y]∥∥∥.
By definition,

∥∥∥[x] + [y]
∥∥∥ =

∥∥∥[x + y]
∥∥∥ = inf {∥z∥ : z ∈ [x+ y]}. Then, inf {∥z∥ : z ∈ [x+ y]} =

inf {∥z1 + z2∥ : z1 ∈ [x], z2 ∈ [y]}. By the definition of the norm, we have ∥z1 + z2∥ ≤ ∥z1∥+∥z2∥.
Hence, ∥z1 + z2∥ ≤ inf {∥z1∥+ ∥z2∥}.

(ii) Now, we will show that inf {∥z1∥+ ∥z2∥} ≤ inf {∥z1∥}+ inf {∥z2∥}.
If either inf {∥z1∥} or inf {∥z2∥} are ∞, then it is clear inf {∥z1∥+ ∥z2∥} ≤ ∞.

(iii) Suppose inf {∥z1∥} and inf {∥z2∥} are finite, fix ϵ > 0, then we can find w1 ∈ [x] and w2 ∈ [y]
such that

inf{∥z1∥ : z1 ∈ [x]} ≤ ∥w1∥ ≤ inf{∥z1∥ : z1 ∈ [x]}+ ϵ
2 and,

inf{∥z2∥ : z2 ∈ [y]} ≤ ∥w2∥ ≤ inf{∥z2∥ : z2 ∈ [y]}+ ϵ
2

Then,

inf {∥z1 + z2∥ : z1 + z2} ≤ ∥w1∥+ ∥w2∥ ≤ inf{∥z1∥ : z1 ∈ [x]}+ inf{∥z2∥ : z2 ∈ [y]}+ ϵ

Hence, inf {∥z1∥+ ∥z2∥} ≤ inf {∥z1∥}+ inf {∥z2∥}.
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Hence by (1), (2), (3), ∥[x]∥ = inf {∥z∥ : z ∈ [x]} is a norm in X |Y .

3.2 Banach Space

We begin with some preliminaries put into the context of linear spaces equipped with a norm that you should
be familiar with. For convenience, we now write the sequence (xn)n≥1 = (x1, x2, · · · , xj , · · · ) as simply (xn).

Definition 3.16 (Cauchy Sequence). For a linear space X equipped with a norm ∥·∥, the sequence (xn) is
a sequence is a Cauchy Sequence,

if for any ϵ > 0, there is at least one integer k0, such that ∥xj − xk∥ ≤ ϵ for any k, j ≥ k0.

Remark 3.17 (Relationship between Convergence and Cauchy Sequences). Cauchy sequences are intimately
related to convergent sequences. For example, every convergent sequence in a normed linear space X is also
a Cauchy sequence, since if xn → x, then

∥xn − xm∥ = ∥xn − x+ x− xm∥ ≤ ∥xn − x∥+ ∥x− xm∥ < 2× ϵ

2
= ϵ.

The previous theorem is an elementary result in real analysis that will be useful for completing normed linear
spaces.

Theorem 3.18. Every Cauchy sequence is bounded.

Proof: Recall,
∣∣∣∥x∥−∥y∥

∣∣∣ ≤ ∥x− y∥. Then ∥xn∥−∥xm∥ ≤ ∥xn − xm∥ ≤ ϵ for any ϵ > 0 and any n,m ≥ k0.

Now, fix m = k0. Then, ∥xn∥ ≤ ϵ + ∥xk0
∥ for any n > k0. Put M = max{∥x1∥ , ∥x2∥ , · · · , ∥xk0

∥ + ϵ}.
Hence, ∥xn∥ ≤ M . That is every Cauchy sequence is bounded.

Definition 3.19 (Complete Space). X is a complete space if every Cauchy sequence converges in X.

Notice that a Cauchy sequence may not converge in a given space. E.g., take sequence xn = 1
n in the interval

(0, 1). Then it is clear that xm is Cauchy, but xn converges to 0 which is not in the given space.

Proposition 3.20. In a normed space, each convergent sequence is Cauchy.

Proof: For a convergent sequence xn in a normed linear space X, we have ∥xn − x∥ ≤ ϵ
2 for some n ≥ k0.

Then, ∥xn − xm∥ =
∥∥∥(xn − x) + (x− xm)

∥∥∥ ≤
∥∥∥xn − x

∥∥∥+
∥∥∥x− xm

∥∥∥ ≤ ϵ for n,m ≥ k0.

Remark 3.21 (Complete Normed Linear Space). Because Cauchy sequences are the sequences whose terms
grow close together, the fields where all Cauchy sequences converge are the fields that are not “missing” any
numbers. Furthermore, any divergent sequence is “truly” divergent, that is here is no bigger normed linear
space which makes it convergent.

In the case of the real line, every Cauchy sequence converges; that is, being a Cauchy sequence is sufficient
to guarantee the existence of a limit on the real line. In the general case, however, this is not so [1].

Definition 3.22 (Banach Space). A Banach Space is a normed linear space which is also complete. That
is,



Functional Analysis 21

If (xn) is a Cauchy sequence in a normed linear space X, then there is at least one x in X such that xn → x.

Banach spaces are also called complete normed spaces [2].

Remark 3.23. From Proposition 3.20, we get the following so-called Cauchy convergence criterion:
In a Banach space, a sequence is convergent if and only it is Cauchy.

Example 3.24 (Example from [1]). Show that if X is Banach space, Y a closed subspace of X, the quotient
space X |Y is complete.

Hint 1. Use a Cauchy sequence (qn) in X |Y that satisfies ∥qn − qn+1∥ < 1
n2 .

How do I use this hint?!

3.3 Examples of Normed Linear Spaces

We now describe a number of the most important normed linear spaces from [1].

Example 3.25 (Example from [1]). The space of all vectors with infinite number of components, x =
(a1, a2, · · · ) ∈ X where aj is complex and |aj | are bounded. The norm is

|x|∞ = sup
j

|aj | (16)

This space is denoted as l∞; it is complete.

Example 3.26 (Example from [1]). The space of all vectors with infinitely many components such that∑
|aj |p < ∞, p some fixed number ≥ 1. The norm is

|x|p =
(∑

|aj |p
) 1

p

(17)

This space is denoted lp; it is complete.

Example 3.27 (Example from [1]). S an abstract set, X the space of all complex-valued functions f that
are bounded. The norm is

|f |∞ = sup
S

|f(s)| (18)

This space is complete.

Example 3.28 (Example from [1]). Q a topological space, X the space of all complex valued, continuous,
bounded functions f on Q. The norm is

|f | = sup
Q

|f(q)| (19)

This space is complete.

Example 3.29 (Example from [1]). Q a topological space, X the space of all complex valued, continuous
functions f with compact support. The norm is

|f |max = max
Q

|f(q)| (20)

This space is not complete unless Q is compact.
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Example 3.30 (Example from [1]). D some domain in Rn, the the space of all C∞ functions f in D with
the following property: for some integer k and p ≥ 1,∫

D

|∂αf |p dx < ∞ for all |α| ≤ k,

Where ∂α is any partial derivative:

∂α = ∂α1

1 · · · ∂αn

n , ∂j =
∂

∂xj
, |α| = α1 + · · ·+ αn

The norm is

|f |k,p =

 ∑
|α|≤k

∫
|∂αf |p dx

 1
p

(21)

Theorem 3.31 (from [1]). The norms defined in Examples 3.25 to 3.30 have properties from Definition 3.1
imposed on a norm.

3.4 Problems from Section 3

Problem 3.32. Show that the properties enumerated in Definition 3.5 hold.

Problem 3.33. Prove Claim 3.7

Problem 3.34. Show that each possible definition of a norm of a product space from Claim 3.8 has the
properties of a norm and that all three are equivalent by Claim 3.7.

Problem 3.35. Prove Claim 3.13.

Problem 3.36. Prove Example 3.24.

4 Completing a Normed Linear Space (NLS)

Before we consider the process of completing a normed linear space, we first consider some normed linear
space that are not complete.

Example 4.1. Consider the space of continuous functions on the closed interval [a, b] denoted C[a, b]. On

this space, introduce a norm, say the L1 norm. That is, ∥f, g∥ =
∫ b

a
|f(x)− g(x)| dx for f, g ∈ C[a, b]. This

normed linear space is not complete.

Hint 2. For a sequence not to be Cauchy, there needs to be some N > 0 such that for some ϵ > 0, there
are m,n > N where ∥an − am∥ > ϵ. In other words, no matter how far out into the sequence the terms are,
there is no guarantee they will be close together.

Solution (Example 4.1). It is clear that this space is not complete. Indeed, we can find a sequence in such
a space such that this sequence will not converge.

For instance, put [a, b] = [0, 1] and fn(x) = nx. Then,

∥fn, fm∥ =

∫ 1

0

|fn(x)− fm(x)| dx =

∫ 1

0

|nx−mx| dx =

[
|m− n| x

2

2

]1
0

=
|m− n|

2

For m = n+ 1, we always have ∥fn, fm∥ = 1
2 . That is by the hint provided in Hint 2, we have some N > 0

such that for ϵ = 1
4 , there are m,n > N we have ∥f, g∥ > ϵ.
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Example 4.2. Let X = (0, 1) and take the norm between any two numbers x and y belonging to X to be
∥x, y∥ = |x− y|. This normed linear space is not complete.

Solution (Example 4.2). Take xn = 1
n . Notice that xn is a Cauchy sequence that converges to 0. However,

also notice that 0 is not in X. That is X is not a complete normed linear space.

Notice that convergence is defined in terms of a limit. For example, take a convergent sequence xn → x in a
normed linear space X, and remove the point x from X, denoted X \ x. That is, assume for any n, xn ̸= x.
Then (xn) is still a sequence in the subspace X \ x, but it no longer converges. So (xn) converges in X but
not in X \ x. How are we to know whether a normed linear space has the property that all sequences are
Cauchy sequences? If a normed linear space is “missing” these limit points, is it possible to add them into
the normed linear space X?

The processes of adding these “missing” points is called Completion of a Normed Linear Space.

4.1 The Process of Completion of a Normed Linear Space

This lecture presents the standard method of completing a normed linear space. The construction does not
differ from the one employed to complete a metric space found in [3] and is inspired from the construction
of the real numbers by Cantor.

We would like to define a method to complete a normed linear space, that is we will introduce new points in
the space to make it complete. This is based on a general method as follows:

Step 1 Consider a Normed Linear Space (NLS) represented by X such that X is not necessarily complete
with respect to a given norm.

Step 2 Define a new space, Z, of Cauchy sequences from X, that is

Z = {(xj)j≥1 : xj ∈ X and (xj)j≥1 is a Cauchy sequence}

Notice that Z is a linear subspace of X, since we can add two sequence in Z by adding each coordinate,
and if each sequence is Cauchy, then the sum is also Cauchy. Hence Z is closed under addition. For
the same reasons, Z is also closed under scalar multiplication.

Remark 4.3. If we stopped here, we may be tempted to define a norm as follows:

For a Cauchy Sequence (xj)j≥1 in the previously defined linear space Z, define ∥(xj)j≥1∥ = lim
n→∞

∥xj∥.
Since (xj)j≥1 is a Cauchy sequence, we know that (xj)j≥1 will converge.

Notice that ∥(xj)∥ = lim
j→∞

∥xj∥ = 0 does not imply that (xj)j≥1 = (0)j≥1 it only implies xj → 0.

Hence, ∥(xj)∥ = lim
n→∞

∥xj∥ is not a norm on Z as defined in Definition 3.1.

Step 3 Now, define a subspace of Z, denoted X0, as the space of all constant sequences. That is, X0 =
{(x, x, x, · · · ) : x ∈ X}. It is clear that each constant sequence in X0 is Cauchy. Furthermore, there is
a one-to-one correspondence between X and X0. In this way, we have “embeded” X into Z. That is,
X0 ⊆ Z, where X0 represents the original set X.

Step 4 We wish to define a norm on Z. To define such a norm, we will need to introduce equivalence relations
on Z.

We will say that two sequence, (xj)j≥1 and (yj)j≥1 are equivalent, denoted (xj)j≥1 ∼ (yj)j≥1, if
yj − xj → 0 ⇐⇒ lim

j→∞
(yj − xj) = 0.
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That is, we can create a new linear subspace Y ⊆ Z such that Y = {(xj)j≥1 ∈ Z : xj → 0}. Then
(xj)j≥1 and (yj)j≥1 are equivalent if we have (yj)j≥1 − (xj)j≥1 = (yj − xj)j≥1 is in Y . Notice that Y
is a linear subspace of Z since it is closed under addition and scalar multiplication.

Step 5 Define X = Z |Y = {[(xj)j≥1] : (xj)j≥1 ∈ Z}. Notice that elements of X are equivalence classes. That
is [(xj)j≥1] = {(zj)j≥1 : zj − xj → 0}. We will show that the closure of X0, denoted X0, is exactly
X = Z |Y .

Step 6 Define
∥∥∥[(xj)j≥1]

∥∥∥ = lim
j→∞

∥xj∥. For convenience, we now write the sequence (xj)j≥1 as simply (xj).

Claim 4.4.

(i) lim
j→∞

∥xj∥ is well defined.

(ii)
∥∥∥[(xj)]

∥∥∥ is a norm as defined in Definition 3.1.

Proof:

(i) For each Cauchy Sequence (xj), we have that the sequence of norms (∥xj∥) is also Cauchy, since,

for any ϵ > 0, there is some k0 such that
∣∣∣∥xj∥ − ∥xk∥

∣∣∣ ≤ ∥xj − xk∥ ≤ ϵ for any k, j ≥ k0

by Claim 3.4. Furthermore, since the sequence of norms (∥xj∥) is a Cauchy sequence of real
numbers, by Remark 3.21 we have that the sequence of norms, (∥xj∥), converges.
Now, take two sequences (xj)j≥1 and (yj)j≥1 both in [(xj)], such that [(xj)] = [(yj)]. We want to
show that lim

j→∞
∥xj∥ = lim

j→∞
∥yj∥.

Since we assumed that [(xj)] = [(yj)], we have [(yj)] ∼ [(xj)] ⇐⇒ yj − xj → 0. Then

∥yj − xj∥ → 0. By Claim 3.4, we have
∣∣∣∥yj∥ − ∥xj∥

∣∣∣ → 0. Hence, lim
j→∞

∥xj∥ = lim
j→∞

∥yj∥.

That is lim
j→∞

∥xj∥ is well defined.

(ii) Now we will show that all three properties of a norm is satisfied.

(1) It is clear that
∥∥∥[xj ]

∥∥∥ ≥ 0 since each ∥xj∥ ≥ 0. Hence
∥∥∥[xj ]

∥∥∥ = lim
j→∞

∥xj∥ ≥ 0.

Now, assume that ∥[xj ]∥ = 0, then by definition we have ∥[xj ]∥ = lim
j→∞

∥xj∥ = 0.

We claim that the above means that [xj ] = [0]. That is, (xj) ∈ Y .
Now, ∥xj − 0∥ = ∥xj∥, then lim

j→∞
∥xj − 0∥ = lim

j→∞
∥xj∥ = 0, since (xj) ∈ Y .

That is, [xj ] = [0].

(2) Pick some scalar, say α. Now,
∥∥∥α[xj ]

∥∥∥ =
∥∥∥[αxj ]

∥∥∥ = lim
j→∞

∥αxj∥ = |α| lim
j→∞

∥xj∥ = |α|
∥∥∥[xj ]

∥∥∥
Hence,

∥∥∥α[xj ]
∥∥∥ = |α|

∥∥∥[xj ]
∥∥∥.

(3) Recall that [xj ] + [yj ] = [xj + yj ].

Then
∥∥∥[xj ]+[yj ]

∥∥∥ =
∥∥∥[xj+yj ]

∥∥∥ = lim
j→∞

∥xj + yj∥ = lim
j→∞

(∥xj + yj∥) = lim
j→∞

∥xj∥+ lim
j→∞

∥yj∥ =∥∥∥[xj ]
∥∥∥+

∥∥∥[yj ]∥∥∥.
Hence,

∥∥∥[xj ]
∥∥∥ = lim

j→∞
∥xj∥ is indeed a norm in the linear space X.

Step 7 Finally, we will show that X = Z |Y is complete with respect to the norm
∥∥∥[xj ]

∥∥∥ = lim
j→∞

∥xj∥.
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Theorem 4.5. X is complete with respect to the previously defined norm ∥·∥.

Proof: Consider a sequence of equivalent classes of Cauchy sequences, [xn
j ]. We want to show there is

at least one [xj ] in X = Z |Y such that [xn
j ] → [xj ] as n ↑ ∞.

Aside: [xn
j ] is a sequence of sequences, that is:

(x1
j )j≥1 = (x1

1, x
1
2, x

1
3, · · · )

(x2
j )j≥1 = (x2

1, x
2
2, x

2
3, · · · )

(x3
j )j≥1 = (x3

1, x
3
2, x

3
3, · · · )

...
(xm

j )j≥1 = (xm
1 , xm

2 , xm
3 , · · · )

...


each of these are Cauchy sequences.

Then [(xn
j )] is Cauchy if for any ϵ > 0 there is at least one M0 such that

∥∥∥[(xn
j )]− [(xm

j )]
∥∥∥ ≤ ϵ for any

n,m ≥ M0. That is, lim
j→∞

∥∥xn
j − xm

j

∥∥ ≤ ϵ.

Returning to our proof, we want to show that [xn
j ] → [xj ] . That is, lim

n→∞
lim
j→∞

∥∥xn
j − xj

∥∥ = 0.

(1) Pick [xn
j ] Cauchy. So, for any ϵ > 0 there is a N0 such that

∥∥∥[xn
j ] − [xm

j ]
∥∥∥ = lim

j→∞

∥∥xn
j − xm

j

∥∥ ≤ ϵ

for every n,m ≥ N0.

Now, fix p = 1, 2, 3 · · · and put ϵ = 1
2p+1 . Then there is n(p) such that

∥∥∥[xn] − [xm]
∥∥∥ ≤ 1

2p+1 for

n,m ≥ n(p).

Notice without loss of generality, we can assume that n(p) < n(p+ 1).

So, lim
j→∞

∥∥∥xn(p)
j − xm

j

∥∥∥ ≤ 1
2p+1 .

Now, for m = n(p + 1), there is an integer R(n(p),m) such that,
∥∥∥xn(p)

j − xm
j

∥∥∥ ≤ 1
2p for j ≥

R(n(p),m).

4.2 Problems from Section 4

Problem 4.6. Prove Theorem 3.31.

Problem 4.7. Show Example 4.1 is not complete.

Problem 4.8. Show Example 4.2 is not a complete.
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