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Abstract

This thesis presents a study of extreme movements in financial asset returns. Accord-
ing to Extreme Value Theory, the distribution of an extreme financial asset return obeys a
Fréchet distribution. Such a distribution of extreme realizations depend on the characteri-
zation of the tail of the distribution of the asset return. We investigate this tail behaviour
by the Hill method for estimating the heaviness of the tail.

Using data from a random collection of stocks and indexes, we show empirically that
financial asset returns have characteristics that preclude the log-normal assumption of
distribution of prices in the Black-Scholes model. Furthermore, we show that the distri-
bution of asset returns skew away from the mean and such a distribution has heavy tails.
Hence, asset returns will have extreme realizations with greater probability that predicted
by Black-Scholes model.
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Introduction

Extreme movements in prices of financial assets are rare, but their effects are profound
and long-lasting. The study of these so-called Black Swan events lead greater attention
to modelling the distribution of extreme realizations of financial asset returns. Ultimately,
risk managers must relate their risk measures (VAR, cVAR) to the probability of an ex-
traordinary event under normal market conditions.

It was first noted by Mandelbrot and then others after that the returns of financial
assets were poorly fitted by a Gaussian distribution. Empirical analysis by Mandelbrot
showed that the distribution of returns have tails that are heavier than those proposed by
the famed Black-Scholes model [22, 23]. Furthermore, asset return distributions display
strong asymmetry. Such characteristics imply that a Gaussian model for returns does not
correspond to reality and will grossly underestimate the risk of extreme market swings.
Following Mandelbrot’s pioneering work, numerous studies have documented that financial
time series can be well approximated with tails that decay by the power law.

In this thesis, we considered Extreme Value Theory to study rare events and its applica-
tion to financial assets. Since extreme events occur at the tails of asset return distributions,
we use Extreme Value Theory to estimate and make inferences about how fast a tail of
a distribution decays. Extreme Value Theory studies the limiting distribution of large
realizations (either negative or positive) of a series.

Outline: We begin in Chapter 1 by giving an overview of financial asset returns and an
exposition of the Black-Scholes assumption for prices of financial assets. In Chapter 2 we
discuss kurtosis and skewness. We show that asset returns have kurtosis and skewness that
preclude the log-normal assumption of prices in the Black-Scholes model. We also discuss
how such measures are not sufficient for determining which type of distribution an asset
return will have. Chapter 3 represents the bulk of this thesis, wherein we review Extreme
Value Theory for independent, identically distributed random variables. We then extend
these results to random variables with a type of weak dependence. Chapter 4 introduces
our methodology for estimating the decay of the tails of asset returns. Chapter 5 presents
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our data and some inferences that can be made. Finally, in Chapter 6 we present the
conclusions that we drew from a study of 10 selected assets. Some motivations for further
research are also presented.
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Chapter 1

Preliminaries

1.1 Financial Returns

Consider the closing value of a financial asset at time t – perhaps a stock, exchange rate
or market index – as St (see Fig. 1.1). Denote the logarithm of this price as Xt = lnSt.

Definition 1.1.1 (Non-Overlapping Logarithmic Return). Consider the sequence of ran-
dom variables {Xt}t∈N that represent the daily logarithmic closing price of a financial asset.
The non-overlapping (log-)return of an asset over some time scale, say ∆t ∈ R, is denoted
by:

rt = Xt+∆t −Xt where t = i∆t, i ∈ N

In the proceeding, our empirical analysis focuses on time increments of one day (∆t = 1,
see Fig. 1.2), five days (∆t = 5) and twenty-five days (∆t = 25), henceforth referred to as
daily, weekly and monthly returns.

For small price movements, the logarithmic return is approximately equal to the relative

return

(
St+∆t − St

St

)
. However, in contrast to the relative return series, the logarithmic

return series {rt}t∈N, does not depend on monetary units, thus facilitating comparisons
between assets [14]. Henceforth, we will refer to the logarithmic return as simply the
return.
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Figure 1.1: The daily closing price for the S&P 500 index Figure 1.2: The daily log returns for the S&P 500 index

1.2 The Black-Scholes Model

It was not until the celebrated model by Fischer Black, Myron Scholes and Robert Merton,
eponymously called the Black-Scholes (-Merton) formula, that there was a method available
to analytically value options. In the model, the price of a financial asset (St) is modelled
by the following stochastic differential equation (SDE)

dSt = µStdt+ σStdWt. (1.1)

Where, Wt is a standard Wiener process with distribution N (0, t).

Consider Xt = lnSt. By applying Itô’s Lemma, Eq. (1.1) admits the following classical
decomposition

dXt =

(
µ− σ2

2

)
dt+ σdWt. (1.2)

Thus, the logarithm of a stock is generalized a Wiener process with distribution

N
((

µ− σ2

2

)
t, σ2t

)
.

Discretizing Eq. (1.2), for small ∆t we have

Xt+∆t −Xt =

(
µ− σ2

2

)
∆t+ σ (Wt+∆t −Wt) ,
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i.e. the process’ increments in a small interval of length ∆t after time t is
(
µ− σ2

2

)
∆t

plus a random fluctuation which is N (0, σ2∆t) distributed [15, 30].

Since Xt is normally distributed, St itself is log-normally distributed. Hence, the Black-
Scholes Model implies that prices of an underlying financial asset have log-normal distri-
bution. Accordingly, the series of non-overlapping financial returns as defined in Defini-
tion 1.1.1 should be also normally distributed.

However, the empirical analysis presented in this thesis and from others have shown
that the distribution of financial return assets are often skewed and heavier-tailed than can
be described by a normal distribution. This can be visually confirmed via the so-called
QQ-plot (see Fig. 1.3).

In general, the QQ-plot for a financial return series shows the upper tail turning upwards
away from the norm line. Similarly, the lower tail turns downward away from the norm
line. This suggests that return series have distributions with heavier tails than predicted
by the Black-Scholes Model. Indeed, the empirical return distributions tend to have larger
forth moments than predicted by the Black-Scholes model [22]. Furthermore, it is often
observed that the distribution of returns tend to decay with a Pareto like tail [8].

As such, realized volatility in returns tend to exceed that which are expected under the
log-normal assumption of prices in the Black-Scholes model. Such discrepancies have obvi-
ous implications for both risk management and instrument pricing methodologies. Fig. 1.4
shows the characteristic peak near the mean of heavy-tailed distributions of return series
when compared to predicted log-normal price assumption of the Black-Scholes model.

Figure 1.3: The QQ-plot of Daily Log Returns of the
S&P index.

Figure 1.4: The histogram of the log return of the S&P
500 and the predicted distribution of the Black-Scholes
Model for daily, weekly and monthly returns

The above characteristics implies that the Black-Scholes Model is insufficient for study-
ing financial returns. A collection of characteristics contrary to the Black-Scholes model
were first documented by Mandelbrot [22] and are common across a wide range of financial
instruments, markets and times scales. These so-called Stylized Facts suggest that the
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stochastic process driving the volatility of an asset return deviates from the log-normal
assumption of the Black-Scholes model1.

1For a list of these Stylized Facts, see Empirical properties of asset returns: stylized facts and statistical
issues by Rama Cont [8].
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Chapter 2

Kurtosis, Skewness and The Return
Distribution

It is often difficult to obtain descriptive statistics which require the probability distributions
of asset returns, since in general, such distributions are unknown. However, it is possible to
approximate the true distribution by a simpler distribution obtained by a limiting argument
using Definition 2.0.1 and Theorem 2.0.2.

Definition 2.0.1 (Convergence in Distribution of Random Variables). A sequence of ran-
dom variables {Xi}i∈N having distribution functions {Fi}i∈N is said to Converge in Dis-
tribution (or weakly converge) to a random variables X, having distribution function F ,

denoted Xn
d→ X, if

Fn(x) → F (x) as n → ∞
for all continuity points x to F

In probability, we can prove convergence in distribution by looking at corresponding
characteristic functions. However, for our purposes, we will use the following theorem,

Theorem 2.0.2 (Helly-Bray Theorem). For a sequence of random variables {Xi}i∈N and
random variable X, the following are equivalent

(i) Xn
d→ X,

(ii) for all real bounded and continuous functions g, E [g(Xn)] → E [g(X)] as n → ∞.

The idea of Theorem 2.0.2 is that convergence in distribution can be translated into
the convergence of expectations for all real bounded and continuous functions. These two
concepts will also be useful in Chapter 3.
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2.1 Kurtosis and Skewness

Let X be a random variable, then µ = E [X] is defined as the mean. Denote µq =
E [(X − µ)q] as the qth central moment of random variable X. We can define a measure for
the “heaviness” of the tail of probability distribution function f of random variable X and
how much the f “skews” away from µ for well-behaved continuous distributions as follows

Definition 2.1.1 (Skewness and Kurtosis). The Skewness coefficient of the distribution is
defined to be

τ =
µ3

µ
3
2
2

.

The kurtosis excess coefficient is

κ =
µ4

µ2
2

− 3.

Let {Xi}ni=1 be realizations of X. We formulate the sample skewness and kurtosis to

estimate the true statistic. Denote µ̂q =

∑n
i=1(Xi − µ̂)q

n
as the qth sample moment, where

µ̂ =

∑n
i=1 Xi

n
is the sample mean.

Definition 2.1.2 (Sample Skewness and Sample Kurtosis). The sample Skewness is

τ̂ =
µ̂3

µ̂2

3
2

And sample kurtosis excess is

κ̂ =
µ̂4

µ̂2
2 − 3

When {Xi} are iid and normal, the sample estimators converge asymptotically as fol-
lows,

√
nτ̂ ∼ N (0, 6) and

√
nκ̂ ∼ N (0, 24) [1].

A normal distribution has skewness coefficient (τ) of zero. When a probability distri-
bution distribution f is unimodal, a negative skew coefficient commonly indicates that f
has more density to the left of the median. Similarly, a positive skew coefficient indicates
that density is concentrated to the right of the median. Hence for well behaved distribu-
tions, any value skewness coefficient value other than zero indicates the probability density
function of the return series is at least asymmetric and has more mass at one tail over the
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other. However, if one tail is long while the other is fat, then the previous characterization
is voided [29].

A normal distribution has kurtosis excess (κ) of zero. Distributions with zero excess
kurtosis are called mesokurtic, but are not necessarily normal. Distributions with positive
excess kurtosis are called leptokurtic, and tend to have a distinct peak near the mean,
decline faster than a normal distribution, and have heavy tails. Distributions with negative
excess kurtosis are called platykurtic, they have a characteristic flat top near the mean and
shorter, thinner tails.

While the measures of kurtosis and skewness can be used in identifying if the distribu-
tion of a return series is not normal, they are not sufficient for identifying what type the
distributions of returns are (see Example 2.1.3).

Example 2.1.3. Consider the Laplace(µ, β) distribution

f(x | µ, β) = 1

2β
e−

|x−µ|
β .

Figure 2.1: Comparison of Laplace(0, 1
2
) and N (0, 1

2
)

It can be shown that the mean, variance, skewness and kurtosis excess are as follows [26]

(mean) µ = µ

(variance) µ2 = 2β2

(skewness) τ = 0

(kurtosis excess) κ = 0

9



Then the Laplace
(
0, 1

2

)
distribution has the same descriptive statistic as a normal dis-

tribution N
(
0, 1

2

)
, however it is clearly not normal (See Fig. 2.1). Hence, while kurtosis

excess and skewness may be used to reject the Gaussian hypothesis, it cannot be used to
confirm it.
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Chapter 3

Tail Density

Mandelbrot proposed that so-called heavy-tailed distributions govern the asset returns of
economic and financial return series [22]. He observed that the number of extreme ob-
servations found in the data of financial return series preclude a Gaussian density [23].
Such time series are characterized by their high variability (See Chapter 2). Ultimately,
his research showed that estimation of extreme events using the Black-Scholes model is
insufficient, as such a model would underestimate the probability of having either a large
positive or negative realizations [5].

Accordingly, Mandelbrot stated that financial asset returns were best modelled as in-
dependent or at least stationary processes, whereby the behaviour of the tails of the un-
derlying distribution, 1 − F (x), follow a Pareto distribution for sufficiently large x. The
Pareto distribution is a heavy-tailed and skewed distribution. Since Pareto distributions
are heavy-tailed, they are often used to model rare events.

Definition 3.0.1 (Heavy Tailed Distribution). The distribution a random variable X with
distribution function F has a Pareto right tail with tail index α > 0 if the exceedance
probability

Pr[X > x] ≡ 1− F (x) = L(x)x−α for x ≥ x0,
1

where L(x) is some slowing varying function2 and x0 is some threshold above which the

1See Karamata’s Theory to observe that the tail with Pareto distribution function can be written as
Pr[X > x] = L(x)x−α.

2A measurable function L : (0,+∞) → (0,+∞) is called slowly varying if for all a > 0,

lim
x→∞

L(ax)
L(x)

= 1.
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power law holds.

Here, the tail index α, summarizes the “weight” of the tail of the distribution of the
random variable X. When x is large enough, L(x) converges to a constant, although it may
converge very slowly. Distributions that have tails with the above characteristic include the
Pareto and the Student-t distributions [24]. Heavy-tailed model are said to occur naturally
in financial asset returns [8].

Clearly, an estimation of the tail index α is crucial, however this estimation is a non-
trivial problem.

3.1 Extreme Value Theory

Initially, suppose that the return series of financial assets, {rt}nt=1 are independent and
identically distributed (this restriction will be lifted in Section 3.1.1) with distribution
function F . In order to solve the general limit problem of extremes, we rely on the concepts
from probability theory as defined in Definition 2.0.1 and Theorem 2.0.2.

Definition 3.1.1 (Maximum Order Statistic). For a sample of n observations {rt}nt=1, the
ordered samples, r(1) ≤ r(2) ≤ · · · ≤ r(n) are called the order statistics where r(j) is the jth

largest realization and is called the jth order statistic. A special case of the order statistic
is as follows,

r(n) = max
0≤t≤n

{rt}

is defined as the Maximum order statistic of the time series {rt}. 3

Recall from Definition 1.1.1, {rt} represents values of a process measured on a regular
time scale. Hence, r(n) in Definition 3.1.1 represents the largest observation of the stochastic
process over n time units.

When the distribution F of such a process is known the limiting distribution function
of the largest order statistic, denoted F(n)(·) can be derived for any value of n as follows

3We focus on the properties of maximum return, however any analysis can be applied also to the
minimum return, since r(1) = −max1≤t≤n{−rt}.
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F(n)(x) = Pr[r(n) ≤ x]
max.
= Pr[r1 ≤ x, r2 ≤ x, . . . , rn ≤ x]

ind.
=

n∏
j=1

Pr[rj ≤ x]

=
n∏

j=1

F (x) = [F (x)]n (3.1)

Intuitively, this states that since extreme realizations occur near the upper end of F , the
asymptotic behaviour of r(n) must somehow be related to the right tail of the probability
density f , near its right endpoint [6].

Denote xF := sup{x : F (x) < 1} as the rightmost endpoint of F (for now, assume that
xF < ∞, xF may indeed be infinite). It can be shown that r(n) converges in probability to
xF as n → ∞.

Proposition 3.1.2. r(n) converges in probability to xF

Proof: Denote xF := sup{x : F (x) < 1} and fix ϵ > 0. Then,

lim
n→∞

Pr[|r(n) − xF | > ϵ] = lim
n→∞

Pr[xF < r(n) − ϵ ∪ xF > r(n) + ϵ]

≤ lim
n→∞

[
Pr[r(n) > xF + ϵ] + Pr[r(n) < xF − ϵ]

]
= lim

n→∞
[1− [F (xF + ϵ)]n + [F (xF − ϵ)]n]

= 1− 1− 0 = 0

Hence, r(n)
p→ xF .

However, F is generally unknown (hence, F(n) is also not known). Furthermore, when
xF = ∞ it is not clear as to how to find a limiting distribution of the maximum order
statistic. Regardless, [F (x)]n is said to be a degenerate distribution function4, since for
all x < xF , Pr

[
r(n) ≤ x

]
= 0, and for all x > xF Pr

[
r(n) ≤ x

]
= 1 as n → ∞. Such a

distribution is not of practical use to us.

4A distribution function where for some constant x0,

F (x) =

{
0 for x < x0

1 if x ≥ x0

.
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In order to analyze the extreme behaviour of a financial return series, we need conditions
on F that ensure that there exists a pair of sequences of numbers (αn > 0, βn) which reduce

and scale r(n), such that the distribution of the standardized extremes
r(n) − βn

αn

is non-

degenerate. In other words, we seek a limiting distribution which is not concentrated on a
single point [6].

Hence, we concern ourselves with sequences {(αn > 0, βn)}n∈N that appropriately stan-
dardize the distribution of r(n) such that

lim
n→∞

Pr

[
r(n) − βn

αn

< x

]
= lim

n→∞
F(n)(αnx+ βn) → G(x)

Where G is non-degenerate. More explicitly, we seek conditions on the the tail of F such
that

lim
n→∞

[F (αnx+ βn)]
n = lim

n→∞

(
1− n

1− F (αnx+ βn)

n

)n

,

converges to some non-trivial limit. Recalling an elementary result in calculus,
limn→∞

(
1− cn

n

)n
= e−c ⇐⇒ limn→∞ cn = c, we obtain Proposition 3.1.3.

Proposition 3.1.3. 5 Denote F (x) = Pr(X > x) and un := αnx+βn. For 0 ≤ τ ≤ ∞ and
a sequence of real numbers {un}n≥1, it holds for n → ∞ that the following are equivalent

(i) nF (un) → τ,

(ii) Pr[r(n) ≤ un] = F n(un) → e−τ .

Proposition 3.1.3 states that depending on the tail of F , it is expected that for pairs
of real number sequences {αn > 0, βn} that an asymptotic distribution can emerge. The
proposition does not state that such an asymptotic distribution will occur.

5For proofs of this proposition, see Extreme Value Analysis: an Introduction by Charras-Garrido and
Lezaud [6] or Extremes and Related Properties of Random Sequences and Processes by Leadbetter, Lind-
gren and Rootzén [20].
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3.1.1 Limiting Distribution of The Largest Order Statistic of An
iid Time Series

Definition 3.1.4 (Maximum Domain of Attraction (MDA)). If there exists a sequence of
pairs of real numbers (αn > 0, βn) such that

Pr

[
r(n) − βn

αn

≤ x

]
= F n (αnx+ βn) → G(x) as n → ∞

where G is some non-degenerate distribution function, then F is said to be in the maximum
domain of attraction of G, denoted F ∈ MDA(G).

Here after, we assume that the underlying marginal distribution function F is con-
tinuous and strictly increasing. It follows from Definitions 2.0.1 and 3.1.4, that if

F n (αnx+ βn) → G(x) as n → ∞ then the random variables {Xn :=
r(n)−βn

αn
}n∈N

d→ X,
where X has distribution G as defined in Definition 3.1.4.

Two natural questions arise from Definition 3.1.4:

(i) Can more than one possible non-degenerate function appear as a limit in Defini-
tion 3.1.4, i.e., can F ∈ MDA(G) and F ∈ MDA(H)?

(ii) What are the characteristics of F for which there exist sequences αn and βn such
that F ∈ MDA(G)?

Theorem 3.1.5 (Khintchine’s Theorem). 6 Let {Fn}n∈N be distribution functions, and let
G be a non-degenerate distribution function. Suppose there exists a pair of sequences of
real numbers {αn > 0, βn} such that

Fn (αnx+ βn) → G(x)

then it holds that there are is another pair of sequences of real numbers {an > 0, bn} such
that

Fn (anx+ bn) → H(x)

if and only if
an
αn

→ α,
bn − βn

αn

→ β, as n → ∞

then H(x) = G(αx+ β)

6For a proof Khintchine’s Theorem, see Extremes and Related Properties of Random Sequences and
Processes by Leadbetter, Lindgren and Rootzén [20]
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Theorem 3.1.5 makes precise that different choices of the scaling sequences αn and βn

lead to distributions that are related by a transformation. Hence, the norming sequences
such that a limiting distribution exists are not necessarily unique, but the asymptotic
distribution function is. Hence, we require a characterization on the tail of F such that
norming sequences αn and βn exist.

Theorem 3.1.6 (Fisher-Tippet, Gnedenko). Suppose F ∈ MDA(G) for some non-
degenerate limiting distribution G as defined in Definition 3.1.4, then G must have one
of following distribution functions known as Generalized Extreme Value (GEV) distribu-
tion.

Gξ(x) =

{
exp (−(1 + ξx)−

1
ξ ) if ξ ̸= 0

exp (−e−x) if ξ = 0
where x is such that 1 + ξx > 0.

The case ξ = 0 can be thought of as the limit of the distribution function as ξ → 0.

The Gumbel distribution corresponds with ξ = 0, the Fréchet distribution with ξ > 0
and the Weibull distribution with ξ < 0 (See Fig. 3.1). Here the parameter ξ is referred
to as the shape parameter and it governs the behaviour of the limiting distribution. 1

ξ
is

called the tail index of the distribution [25].

Figure 3.1: The probability density and marginal density respectively of a standard GEV distribution in three cases: ξ = 1
(Fréchet); ξ = 0 (Gumbel); and ξ = −1 (Weibull). For all cases (αn, βn) = (1, 0)
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Example 3.1.7 (McNeil, Frey and Embrechts). If the underlying distribution is a Pareto

distribution Pa
(

1
ξ
, κ
)

with df F (x) = 1 −
(

κ
κ+x

) 1
ξ for ξ > 0, κ > 0, x ≥ 0, we can take

normalizing sequences cn = ξκnξ and dn = κnξ − κ. Using Definition 3.1.4 we get,

F n(cnx+ dn) =

(
1−

[
1

ξxnξ + nξ

] 1
ξ

)n

,

=

(
1− (1 + ξx)−

1
ξ

n

)n

, 1 + ξx ≥ n−ξ,

lim
n→∞

F n(cnx+ dn) = exp
(
− (1 + ξx)−

1
ξ

)
1 + ξx > 0

from which we conclude that F ∈ MDA (Gξ>0) .

It may be noted that Theorem 3.1.6 is a special case of Proposition 3.1.3 using a linear
parameterization where τ = − lnG(x), un = αnx + βn, thus a necessary and sufficient
condition for the limit G is

n(1− F (αnx+ βn)) → − lnG(x), as n → ∞

for any x and some pair of real sequences {αn > 0, βn}. This explains the relevance of
the tail 1− F (x) for the Maximum Domain of Attraction criterion from Definition 3.1.4.

The aforementioned Fisher-Tippet-Gnedenko Theorem 3.1.6 has three important im-
plications:

(i) The tail behaviour of the random variable, denoted F (x), determines the limiting
distribution of the normalized maximum r(n) and not the specific distribution, F (x)
(See Theorem 3.1.8) [28].

(ii) The maximum of a sample of iid random variables after proper normalization can
converge to a non-degenerate distribution and that distribution will be one of 3
possible distributions, the Gumbel distribution (ξ = 0), the Fréchet distribution
(ξ > 0) , or the Weibull distribution (ξ < 0).

(iii) Although the above result states that when the limiting distribution of maxima has
a limit, it will be in the GEV distribution family, it does not ensure the existence of
such a limit. (E.g., Poisson Distribution).

Of course, αn and βn can be determined when F is known (See Example 3.1.7). How-
ever, we wish to determine the conditions on F (x) whereby the asymptotic distribution of
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the maximum order statistic exists when F is not known. We consider only distributions
F (x) that are considered “heavy-tailed” (See Definition 3.0.1) since they correspond to
Mandelbrot’s observations of financial assets returns.

The following characterization of the tail behaviour was given by Gnedenko wherein
the tail of distribution F decays by the power law.

Theorem 3.1.8 (Fréchet MDA, Gnedenko). For ξ > 0

F (x) = L(x)x− 1
ξ ⇐⇒ F ∈ MDA(Gξ)

Where, L(x) is some slowing varying function as x → ∞.

Accordingly, Theorem 3.1.8 states that any distribution that falls into the maximum
domain of attraction of a Fréchet class (ξ > 0) GEV distribution can be modelled by a
Pareto distribution. Equivalently, the tail index α of a heavy-tailed distribution as defined
in Definition 3.0.1 is related to the parameter ξ for a Fréchet class GEV distribution.

Consequently, the entire tail of F can be utilized for fitting a distribution (see Chap-
ter 4). Theorem 3.1.8 states that the distribution of interest has a negative tail index, (−1

ξ
)

and the tail decays with rate α = 1
ξ
. Recall that ξ is called the shape parameter which is

the main parameter of interest.

Extending Extreme Value Theory to Strictly Stationary Processes

Until now, our assumptions underlying the exposition of the asymptotic distribution of the
maximum value presented in Section 3.1 required that the return series be iid. However, the
iid assumption is too simple to be a description of real-life phenomena. In particular, the
iid assumption is violated for financial asset returns, since often the realizations of a process
are dependent on its recent history (see Fig. 3.2). Furthermore, successive observations for
returns exhibit nonlinear correlation [8]. This dependence can have a significant impact
on the analysis and interpretation of such data.

3.1.2 Volatility and Nonlinear Dependence

Definition 3.1.9. The auto-correlation function (ACF) of {Xi} at lag h is

ρ(i, h) =
Cov(Xi, Xi+h)√

V ar(Xi)V ar(Xi+ h)
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Typically, a return series for financial assets do not exhibit any significant auto-
correlation. That is, ρ(h) rapidly decays to zero as h increases. However, this does not
imply that such time series are. Independence however, implies that any nonlinear func-
tion of returns will have no auto-correlation [8]. In general, this property does not hold
(see Fig. 3.2) for financial asset returns.

Figure 3.2: ACF for Squared and Squared Returns For the S&P 500

Extreme events in financial returns returns tend to occur in clusters caused by local
dependence [6]. Hence, we require a modification of the standard methods for analyzing
extreme events. We will try to generalize the results of extreme value theory for iid se-
quences by permitting a type of weak dependence. In our following analysis, we will assume
that the time series {rt} is stationary as defined in Definition 3.1.10 and has a marginal
distribution function that is continuous and strictly increasing.
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3.1.3 Stationary Returns

As previously stated, in general returns of financial assets are typically not iid [6]. Nonethe-
less, in general, the statistical properties of financial asset return processes remain stable
over time. This time invariance in statistical properties corresponds with the stationary
hypothesis [8].

Definition 3.1.10 (Stationary). We will say that the time series {Xi} is station-
ary(sometimes referred to as weakly stationary) if

(i) E(Xi) = µ is independent of i,

(ii) Cov(Xi+h, Xi) is independent of i for each h ∈ Z,

We will say that {Xi} is strictly stationary (also referred to as strongly stationary) if
(Xi1 , · · · , Xij) ∼ (Xi1+h, · · · , Xij+h) for each j ∈ N and all i1, ..., ij, h ∈ Z

Hence, stationarity corresponds to a series whose variables may be mutually dependent,
but whose stochastic properties are homogeneous through time [30].

It follows from the above definition that an iid process is strictly stationary. Further-
more, if the process is strictly stationary and has finite second moment, then such a process
is also stationary [30].

Proof: Suppose we have a strictly stationary process {Xi}i∈Z as defined in Definition 3.1.10
and such a process has finite second moment. Then,

(i) . . . , X−1, X0, X1, . . . have the same distribution function. For some fixed x,

fXj
(x) = fXk

(x) for any j, k ∈ Z.

Hence, E(Xi) = µ ∀i ∈ Z.

(ii) (Xi1 , Xi2) and (Xi1+h, Xi2+h) have the same joint distribution function for any i1, i2, h.
For some fixed x1, x2,

fXi1
,Xi2

(x1, x2) = fXi1+h,Xi2+h
(x1, x2) for any i1, i2, h ∈ Z.

Hence, Cov(Xi1+h, Xi2+h) = Cov(Xi1 , Xi2) ∀i1, i2, h ∈ Z
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If we can extend the preceding exposition of extreme value theory to strictly stationary
sequences, then we can extend it to stationary sequences given that a stationary sequence
has finite variance. If a strictly stationary sequence is close to independent for large enough
time separation, this extension follows naturally.

3.1.4 Maxima of Strictly Stationary Returns

In this section, we assume that {rt}t∈N is strictly stationary. We shall further assume that
the dependence between rj and rk falls off in some specified way as

∣∣j − k
∣∣ increases.

The following condition was given by Leadbetter and Rootzén [19],

Condition 3.1.11 (D(un)). A strictly stationary series {rt} is said to satisfy the D(un)
condition if, for all i1 < · · · ip < j1 · · · < jq with j1 − ip > l,∣∣Pr [ri1 ≤ un, · · · , rip ≤ un, rj1 ≤ un, · · · , rjq ≤ un

]
− Pr

[
ri1 ≤ un, · · · , rip ≤ un

]
Pr
[
rj1 ≤ un, · · · , rjq ≤ un

]∣∣ ≤ α(n, l)

Where α(n, ln) → 0 for some sequence ln such that
ln
n

→ 0 as n → ∞

Under the D(un) condition, for some threshold sequence of un that increases with n,
the difference of probabilities in Condition 3.1.11 is sufficiently close to zero and have little
effect on the limit laws for extremes. Since correlation is also a measure of the independence
of two random variables, Condition 3.1.11 states that ρ(h) → 0 as h → ∞ for any non-
linear function of rt and rt+h (see Fig. 3.3). In other words, Condition 3.1.11 states that
two events sufficiently far away become asymptotically independent as n increases.

Theorem 3.1.12. Let {rt} be a strictly stationary process for which there exists a sequence
of pairs of real numbers (αn > 0, βn) such that

Pr

[
r(n) − βn

αn

≤ x

]
→ G(x) as n → ∞

converges for some non-degenerate distribution function, G and the D(un) condition is
satisfied for un := αnx + βn for every real x. Then G is a member of the generalized
extreme value family of distributions as defined in Theorem 3.1.6.
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Figure 3.3: Squared Daily Returns For the S&P 500

Hence, by Theorem 3.1.12, a strictly stationary series satisfying Condition 3.1.11 has
the same asymptotic distribution as an iid series. In other words, provided that the long-
range dependence of a series is very small, the maxima of such a series follows the same
distributional limit as described in Theorem 3.1.6 [7]. This does not however state that
the parameters of the limiting distribution (αn, βn) are the same.

Thus far, we concerned ourselves with possible forms of the limiting distribution of
maxima of strictly stationary series. Now we concern ourselves with whether such a limit
exists. It will be seen that the classical criterion for Maximum Domains of Attraction may
be applied under Condition 3.1.11 for strictly stationary series.

It is convenient at this point to introduce the concept of an associated sequence of
random variables.

Definition 3.1.13 (Associated Sequence of Random Variables). Let {rt} be a strictly
stationary series with marginal distribution F . We defined an associated sequence of
independent random variables, {ϵt} such that each ϵt also has distribution function F .

We will compare the maxima of a strictly stationary series {rt} to its associated iid
series ϵt. Since the marginal distributions of {rt} and {ϵt} are the same, any difference in
the limiting distribution of maxima must be attributable to dependence in the series {rt}
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Definition 3.1.14 (Extremal Index). Let {rt} be a strictly stationary time series with
marginal distribution function F and θ a non-negative number. Suppose for every τ > 0
there exists a sequence un(τ) such that the following hold

(i) n[1− F (un(τ))] → τ ,

(ii) Pr[r(n) ≤ un(τ)] → e−θτ , as n → ∞

Then θ is called the extremal index of the time series {rt}

It can be shown that 0 < θ ≤ 1 is well defined and not dependent on the particular
choice of sequence un(τ). Furthermore, the extremal index can be seen as a measure of the
effect of dependence on the maxima.

Proposition 3.1.15. 7Denote F (x) = Pr(X > x). Let {rt} and {ϵt} be sequences as
defined in Definition 3.1.13. By Definition 3.1.14, we have that for τ > 0 and some
general sequence un that the following are equivalent

(i) nF (un) → τ ,

(ii) Pr[ϵ(n) ≤ un] = [F (un)]
n =

(
1− nF (un)

n

)n
→ e−τ ,

(iii) Pr[r(n) ≤ un] → e−θτ

as n → ∞.

Thus, Proposition 3.1.15 implies that for large n, Pr
[
r(n) ≤ un

]
≈
(
Pr
[
ϵ(n) ≤ un

])θ
=

F nθ(un), provided Condition 3.1.11 holds.

Proposition 3.1.15 for strictly stationary series is comparable to Proposition 3.1.3 for
iid series. Whereas the introduction of dependence into a sequence can significantly affect
various extremal properties, it does not affect the type of asymptotic distribution of the
maxima (See Theorem 3.1.17). It is clear that any iid sequence for which un(τ) may be
chosen satisfying Proposition 3.1.3 has extremal index θ = 1. This is obvious as {ri} and
{ϵi} will comprise the same series. However, the converse is not true. That is one can
have strictly stationary series with θ = 1 which are not iid [7]. In other words, a series for
which θ = 1 means that dependence is negligible at high levels, but not at the extreme
levels that are relevant to a particular application [7].

7For a proof, see Extremes and Related Properties of Random Sequences and Processes by Leadbetter,
Lindgren and Rootzén [20]
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Example 3.1.16 (Coles, Bawa, Trenner and Dorazio). Let {Yi}i∈N be a independent se-
quence of random variables with distribution function

FY (y) = e−
1

(a+1)y , y > 0,

where 0 ≤ a ≤ 1 is a parameter. Define the {Xi}i∈N as follows

X0 = Y0, Xi = max {aYi−1, Yi} , i = 1, . . . , n

For each i = 1, . . . , n,

Pr [Xi ≤ x] = Pr [aYi−1 ≤ x, Yi ≤ x] = e−
1
x ,

provided x > 0. Hence, the marginal distribution of {Xi} for i = 1, 2, . . . is a standard
Fréchet distribution. It can be further shown that {Xi}i=1,2,... is strictly stationary.

Suppose there is another sequence of random variables say, {X⋆
i }i=1,2,... that is iid and

has the same marginal standard Fréchet distribution as {Xi} , then

Pr
[
X⋆

(n) ≤ nx
]
=
[
e−

1
nx

]n
= e−

1
x

by applying Eq. (3.1). On the other hand

Pr
[
X(n) ≤ nx

]
= Pr [X1 ≤ nx, . . . , Xn ≤ nx]

= Pr [Y1 ≤ nx, aY1 ≤ nx . . . , aYn−1 ≤ nx, aYn ≤ nx]

= Pr [Y1 ≤ nx, . . . , Yn ≤ nx] when 0 ≤ a ≤ 1

=
[
e(−

1
(a+1)nx)

]n
=
[
e(−

1
x)
] 1

a+1

In particular, we have Pr
[
X(n) ≤ nz

]
=
(
Pr
[
X⋆

(n) ≤ nz
]) 1

a+1
. Hence the extremal

index value θ = 1
a+1

.

Theorem 3.1.17 (Distribution of The Maxima of Strictly Stationary Time Series). Let
{rt}t∈N denote a strictly stationary time series with common distribution F under Condi-
tion 3.1.11 and let ϵt represent the associated iid process as definition in Definition 3.1.13.
Then for some extremal index θ ∈ R, 0 < θ ≤ 1
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Pr

[
ϵ(n) − βn

αn

≤ x

]
→ G(x) for a non-degenerate limit G(x)

⇐⇒

Pr

[
r(n) − βn

αn

≤ x

]
→ Gθ(x) for a non-degenerate limit Gθ(x) is also non-degenerate

as n → ∞

Theorems 3.1.12 and 3.1.17 imply that under Condition 3.1.11the distribution of the
maxima of a stationary series converges and that limiting distribution is related to the lim-
iting distribution of iid series with the same marginal distribution as the strictly stationary
series by the extremal index. Furthermore, from Theorem 3.1.6, the limiting distribution
G is said to be a Generalized Extreme Value distribution Gξ. It can be easily verified
that for any GEV distribution Gξ its power Gθ

ξ is also a GEV distribution with the same
shape parameter ξ. That is, Theorem 3.1.17 states that the asymptotic distribution of the
maxima of the associated iid process is a GEV distribution if and only if the maxima of
the strictly stationary time series is asymptotically distributed according to a GEV with
the same shape parameter ξ.

Thus, for large enough n , the above implies that

Pr
[
r(n) ≤ αnx+ βn

]
≈ Prθ

[
ϵ(n) ≤ αnx+ βn

]
= F nθ(αnx+ βn) (3.2)

provided that Proposition 3.1.15 holds.

By the way of comment, it is trivially true that Gθ
ξ = Gξ if θ = 1. For cases where

θ = 1 there is no tendency to cluster at high levels and large sample maxima from the time
series behave exactly like maxima from similarly sized iid samples. In other words, the
limiting distribution of r(n) and ϵ(n) are the same. For cases where θ < 1 extreme values
tend to cluster. Indeed for 0 < θ < 1, the limiting distribution may also be taken to be the
same by a simple change of normalizing constants [19]. We note that ARCH and GARCH
processes have θ < 1 [24].

The above Eq. (3.2) does not say that every strictly stationary process has an extremal
index. However, for time series under Condition 3.1.11, such as the financial asset returns
that interest us, an extremal index generally exists [24].

The following derivation for ξ ̸= 0 was given by Tsay [28],
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Proof:[Tsay] Assume that for an strictly stationary sequence {ri} under Condition 3.1.11
with marginal distribution function F has associated iid sequence {ϵi} such that ϵ(n) has
limiting distribution with parameters ξ, α, β. Then by Theorem 3.1.17, we have

Pr
[
r(n) ≤ αnx+ βn

]
= Prθ

[
ϵ(n) ≤ αnx+ βn

]
by Theorem 3.1.6, we have

= exp

[
−θ

(
1 + ξ

x− β

α

)− 1
ξ

]

= exp

[
−
(

1

θξ
+ ξ

x− β

αθξ

)− 1
ξ

]

= exp

[
−
(
ξ

α
ξ
− x− β

αθξ

)− 1
ξ

]

= exp

−(1 + ξ
x− β + α

ξ
− αθξ

ξ

αθξ

)− 1
ξ


= exp

−
1 + ξ

x−
{
β − α

ξ

(
1− θξ

)}
αθξ

− 1
ξ


= exp

[
−
(
1 + ξ

x− b

a

)− 1
ξ

]
(3.3)

Hence, a strictly stationary series {rt} under Condition 3.1.11, if it has limiting distri-
bution with the shape parameter ξ, has the same shape parameter ξ as its associated iid
random variables {ϵt}. Furthermore, such limiting distributions are related by a = αθξ

and b = β − α
(1−θξ)

ξ
(See Theorem 3.1.5). A similar result can be shown for ξ = 0, where

a = α and b = β + α ln(θ).

The practical implication of Theorem 3.1.17 is that under certain conditions, a series
with dependence does not invalidate iid Extreme Value Theory. Furthermore, since θ only
alters the pair real sequences {αn > 0, βn} and not the shape parameter ξ, the precise
value of θ may be unimportant in finding how fast F (x) decays [19].
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Chapter 4

Fitting the Shape Parameter ξ

In this chapter, we consider the estimation of the shape parameter ξ in the case of a
“heavy-tailed” distribution. Equivalently, we place distribution F in the Fréchet domain
of attraction (see Theorem 3.1.8). That is we assume that the returns of a financial asset
{rt} at any time t, has underlying distribution F that has a tail that decays like a power

function, i.e., F (x) = x− 1
ξL(x) for large enough x. Furthermore, we assume that the return

series is independent or at the very least is stationary under Condition 3.1.11. For such
random variables, the asymptotic distribution of the maxima given a pair of normalizing
constants is

F θn(αx+ β) → Gθ
ξ(x) = exp

(
−
(
1 + ξ

x− b

a

)− 1
ξ

)
as n → ∞ and ξ > 0

(See Eq. (3.3)).

Estimation of ξ is a non-trivial problem since the marginal distribution function F of
a return series is difficult to estimate beyond observed data.

We discuss a useful definition below.

Definition 4.0.1 (Quantile Function). Suppose there is a series of realizations {Xi} from
a random variable X. Then the inverse of the distribution function F (x) = Pr [X < x] is

Q(p) := inf{x : F (x) ≥ p}

and is called the Quantile Function.
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Although we do not know the underlying distribution of {Xi} we can exploit Theo-
rems 3.1.8 and 3.1.17 to impose a Fréchet class distribution (ξ > 0) on the asymptotic

distribution of the maxima of {Xi}. Then for sufficiently large x, F (x) = x− 1
ξL(x). Equiv-

alently, we have

lnQ(1− p) = lnL∗
(
1

p

)
− ξ ln(p), (4.1)

where L∗(x) is some other slowly varying function1.

The slope of Eq. (4.1) is somehow related to ξ. When considering only the k largest
observations, a natural estimator for Q(1− k

n+1
) is the order statistic X(n−k+1).

Hence, for the largest k order statistics, the plot

{(
ln

(
n+ 1

k

)
, ln
(
X(n−k+1)

))}
k=1,...,n

is nearly linear if L(x) is constant. When L(x) is not constant, this behaviour is only seen
in small enough values of k [2]. I.e., for sufficiently large x, L(x) converges to a constant.
Such a plot is called a Pareto Quantile (or Zipf) Plot (See Fig. 4.1).

Figure 4.1: Top: The Pareto Quantile Plot for Positive Log Returns of S&P 500 Index. Bottom: The Pareto Quantile Plot
for Positive Log Returns of S&P 500 Index for 0.1n largest order statistics.

When we consider the k largest observations, a naive estimator of the slope of Eq. (4.1)
is

1The two slowly varying L(x) and L∗(x) functions are linked together via the deBruyn conjugation.
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ξ̂(k) =

1
k

(∑k
i=1 lnX(n−i+1)

)
− lnX(n−k+1)

1
k

(∑k
i=1 ln

i
n+1

)
− ln k

n+1

(4.2)

A subsample of k < n largest observations in Eq. (4.2) [18] is selected such that the
choice of k increases with the overall sample size, n.

This estimator is then refined further to the Hill Estimator by assuming that the de-
nominator converges to 1 for large enough n.

4.1 Using the Hill Estimator to Determine ξ

It is clear that an estimator of ξ will use the largest order statistic X(n). However, it is

unclear as to how large k is. If k is too large, then it is unlikely that ξ̂ will be accurate,
since this includes realizations outside the tail region. However, if k is not large enough,
then ξ̂ will be distorted by the fact that there are too few observations available to make
an estimation. In other words, the right choice of the k largest observations is crucial for
a proper estimation of the shape parameter ξ. The right choice of k depends on where the
tail of a distribution begins.

Hill proposed the following non-parametric estimator for ξ for heavy-tailed distributions
based on a known high threshold, x > x0 > 0, where the denominator of Eq. (4.2) converges
to 1 for sufficiently large n.

Definition 4.1.1 (Hill Estimator of ξ). Let k = 1, 2, . . . , n, then the following is the Hill
estimator of shape parameter ξ

ξ̂h(k) =
1

k

(
k∑

i=1

lnX(n−i+1)

)
− lnX(n−k+1) Hill Estimator (4.3)

If the a time series is iid, the Hill estimator (ξ̂h(k)) is asymptotically normal as fol-
lows [18]

√
k
(
ξ̂h(k)− ξ

)
d→ N (0, ξ) .

In general, there is no consensus as to the best choice of k. In practice, one may plot
the estimator ξ̂h(k) against k and find a k such that the estimate appears to be stable [28].

29



This so-called Hill plot proposes a graphical method for choosing an appropriate threshold
by identifying the relevant number of upper order statistics. That is, we find a region in
the Hill plot where the variance seems to subside. This is referred to as the “Eye-Ball
technique” [9]. However, the Hill plot may not be practical for finding the appropriate
threshold since the region of stability is not always obvious from the graph (See Fig. 4.2).

Figure 4.2: The hill plot of the estimators of ξ for the upper(or right) tail and lower (or left) tail for daily returns of S&P
500 for the 500 largest order statistics.

In addition, a severe bias for ξ̂h(k) can appear in many instances. This is due to the
slowly varying function L(x) converging too slowly. I.e., the assumption that the tails of
F follow a strict Pareto distribution, (λx−α) is sometimes too optimistic.

Example 4.1.2. Consider 200000 realizations of a strict Pareto random variable X with
parameter 3. Then

F (x) = Pr(X > x) = λx−3.

Figs. 4.3 and 4.4 show the typical behaviour of a heavy-tailed for the entire data set
as well as the largest 10% of the realizations. The red line is a fitted line using linear
regression.
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Figure 4.3: PP Plot for Entire Pareto Set Figure 4.4: PP Plot for Largest 10% of Pareto Set

The Pareto plot of the largest order statistics is nearly linear. We can plot the Hill
Estimator ξ̂h(k) against k to find a region of stability.

Figure 4.5: Hill Plot of Largest 5000 Order
statistics. The blue line is the true value of
the shape parameter.

Table 4.1: The Hill estimates for Pareto with parameter 3. Standard errors
are in parenthesis.

Right Tail
k 2000 3000 4000

Xi 0.3275(0.0073) 0.3469(0.0063) 0.3604(0.0056)

Hence, we can say that ξ ≈ 0.34± 0.014. Accordingly, an estimate for the right tail is
ˆF (x) = cx−2.94 when x is sufficiently large and c is some unknown constant.

Example 4.1.2 shows that even in a best case scenario, estimation of shape parameter ξ
is difficult. In general, the bias for ξ̂h(k) grows with the number of the largest observations
k [17]. Estimates are much better when k is small [28].

The Hill estimator is only applicable when the underlying distribution F converges to
the Fréchet class of GEV distributions (ξ > 0) [28]. We use the Hill estimator instead of
other estimators since we assume that the distributions of interest (E.g., financial asset

31



returns) are “heavy-tailed”. The Hill estimator is more efficient than other estimators [21].
In our analysis, we choose exceedance k between the largest 10% to 20% of the order
statistics [18, 3, 9].

4.2 Simulated ARCH Process

Introduced by Engle in 1982, the Autoregressive Conditional Heteroscedasticity(ARCH)
models are popular for modelling volatility [30]. It reproduces the same type of volatility
changes as are observed in financial asset returns.

Consider a process {Yn, n ≥ 1} which satisfies the following stochastic difference equa-
tion (SDE), {Yn = AnYn−1 + Bn}n≥1 , for Yn ≥ 0, where {(An > 0, Bn > 0)}n≥1 are iid
real-valued random pairs.

We simulated 1000 realizations of the following ARCH(1) process,

Definition 4.2.1 (ARCH(1)). A process {ϵi} is called a ARCH(1) process if{
ϵi = Xi

(
β + λϵ2i−1

) 1
2

}
i≥1

Where {Xi} are iid standard normal random variables, β > 0, 0 < λ < 1.

Thus, Definition 4.2.1 satisfies the previously stated SDE, where Bi = λX2
i and Ai =

βX2
i . The tails of such a processes are further discussed in de Haan et al [12]. The tail index

parameter, α, is greater than two and is obtained from the equation Γ(α+0.5) =
√
π (2λ)−α.

Such a process will have at least a finite second moment [21]. For instance, when λ =
1

2
,

the tail index α = 2.365 [12].

We simulate the following ARCH(1) process (See Fig. 4.6):

ϵi = Xiσi. (4.4)

σ2
i = 1 + 0.5ϵi−1

Fig. 4.6 plots a 1000 realizations of the ARCH(1) process with λ = 0.5 and β = 1. An
ARCH(1) process exhibits clustering of extreme values similar to those of financial asset
returns. The density of such a process seems to show the characteristic peak near the mean
of a leptokurtic (or heavy-tailed) distribution.
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Figure 4.6: A simulated ARCH(1) process with λ = 0.5 and β = 1.

Figure 4.7: ACFs of Simulated ARCH(1) Process



It is known that the above specified ARCH(1) process has a right tail that is modelled
by F (x) = λx−2.365 for large x [12]. Hence, the shape parameter, ξ = 1

α
= 0.422. Such a

process is also stationary [12].

Thus by Theorem 3.1.8, we estimate the distribution of the maxima of Eq. (4.4) by
assuming such a process has distribution such that F ∈ MDA(Gξ>0). This is a reasonable
assumption since the ARCH(1) process is heavy-tailed [12]. For the right tail, we find a
stable region around the 150 largest order statistics. Similarly, for the left tail, we find a
stable region around the 100 largest order statistics. Table 4.2 summarizes the estimated
tail index parameters, ξ using Hill’s method. The tail index parameters are different from
zero at a significance level of 5%.

Using these estimates, we have the following estimated decays of the tails of F

1− F (ϵ) → crϵ
−2.27

and
1− F (−ϵ) → cl(−ϵ)−2.79

for large enough ϵ, and cr and cl are unknown constants.

Figure 4.8: Hill Plot for the upper (or right) tail. Figure 4.9: Hill Plot for the lower (or left) tail.

According to de Haan et al., the exact constant c for an ARCH(1) process is of little
practical importance, since such a constant does not play a role in the rate of decay of the
tails [12].
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Table 4.2: Results of the Hill estimator for ARCH(1) simulation. Standard errors are in parenthesis.

Upper (or Right) Tail
k 135 140 145

ϵi 0.434(0.038) 0.440(0.037) 0.465(0.037)

Lower (or Right) Tail

k 95 100 105
−ϵi 0.349(0.036) 0.358(0.035) 0.357(0.034)

Figs. 4.8 and 4.9 shows the Hill Plots for the largest 250 order statistics for both upper
and lower tails. The plots indicate that the tail index parameter, α, appears to be larger for
the negative extremes, indicating the ARCH simulation may have a heavier right tail when
compared to the left tail. Overall, these results indicate that the ARCH(1) simulations
from Eq. (4.4) has distribution belonging to the Fréchet family. Thus confirming the
supposition by De Haan, et al. that the ARCH(1) process has heavy tails [12].
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Chapter 5

Data Analysis

We collected daily closing prices of a random assortment of stocks and indexes from
Bloomberg (See Table 5.1). Using Definition 1.1.1, we obtained three resultant return
series {rt}t∈N for fixed time scales ∆t = 1, 5, 25 for each financial asset. Fig. 5.1 shows the
plots of the daily returns from the data set. We can see the typical volatility clustering
behaviour in the selected financial asset returns.

The overall aim of the empirical part of this thesis is to examine the tail characteristics
of a particular set of indexes and stocks. It includes typical data analysis of examining the
descriptive statistics as well as testing the iid hypothesis. A tail index is then computed
for all the series chosen for this study. Since it is well established that financial returns
show “heavy-tails” [22, 22, 8], the type of general extreme value distribution is known a
priori.

Table 5.1: Data Analysed

Daily
Data Symbol Length

Apple AAPL 2001-01-03/2019-06-04
Google GOOG 2014-03-28/2019-06-04

Microsoft MSFT 2001-01-03/2019-06-04
IBM IBM 2001-01-03/2019-06-04
GE GE 2001-01-03/2019-06-04

FTSE UKX 2001-01-03/2019-06-04
S&P 500 SPX 2001-01-03/2019-06-04
TSX TSX 2001-01-03/2019-06-04

Dow Jones DJI 2001-01-03/2019-06-04
DAX DAX 2001-01-03/2019-06-04
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Figure 5.1: The Daily Log Returns of Data Set

5.1 Descriptive Statistics of Financial Return Series

The empirical results from Table 5.2 suggest the underlying distributions a the selected
financial time series depart from a Gaussian distribution. Each time series shows the
characteristic clustering of extremes with the sample means near zero. In general, a price
decrease precedes a price increase.

The descriptive statistics for each financial time series suggest heavy tails and a gen-
erally leftward skew. This suggests that the selected time series have longer left tails. We
also note that kurtosis excess is typically larger in daily returns and gets smaller as ∆t
increases. Furthermore, as the time scale increases, the skewness increases. Such behaviour
implies that the shape of the respective distributions are not the same at different time
scales.

In general, the kurtosis excess for each time series was positive. This suggests that the
distribution of all of the series are heavier than a Gaussian distribution. Thus each time
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Table 5.2: Descriptive Statistics Log Returns

Daily Weekly Monthly
Data τ̂ κ̂ τ̂ κ̂ τ̂ κ̂

Apple -4.41 122.68 -3.76 55.17 -2.55 17.07
Google 0.51 10.62 -0.44 3.07 -0.68 -0.04

Microsoft -0.13 10.08 -0.46 4.75 -0.55 3.60
IBM -0.13 8.48 -0.04 5.27 -0.69 3.79
GE 0.04 8.15 -0.16 12.09 -0.45 1.88

FTSE -0.16 6.71 -0.61 3.50 -0.70 1.06
S&P 500 -0.22 8.98 -1.17 11.99 -0.92 1.67
TSX -0.67 10.47 -1.16 8.54 -1.15 3.43

Dow Jones -0.11 8.66 -1.19 11.09 -0.75 1.05
DAX -0.23 3.02 -0.41 2.01 -0.58 1.63

series realizes more extreme returns than predicted by a Gaussian distribution.

5.2 Auto-correlation

From the auto-correlation of each time series, we can see that the data set is not iid, but
may at least be stationary (See Fig. 3.2). In general, the first order auto-correlation is small
and little serial correlation is found at higher lags. In addition, a strong second order auto-
correlation is found. Each time series shows weak long range dependence corresponding
with Condition 3.1.11. As time scale ∆t increases, the nonlinear auto-correlation between
lags decreases. This non-iid assumption is further support by completion of the Box-Ljung
test. The Box-Ljung tests presented in Table 5.3 show that in general, there is strong
evidence against an iid hypothesis.

Table 5.3: The p-values for each data series from the Box-Ljung Tests

Daily Weekly Monthly
Data Raw Returns Squared Returns Raw Returns Squared Returns Raw Returns Squared Returns

Apple 0.00 0.59 0.00 0.99 0.35 0.94
Google 0.00 0.18 0.18 0.49 0.22 0.00

Microsoft 0.00 0.00 0.01 0.00 0.01 0.85
IBM 0.00 0.00 0.01 0.00 0.00 0.00
GE 0.02 0.00 0.00 0.00 0.02 0.00

FTSE 0.00 0.00 0.00 0.00 0.07 0.00
S&P 500 0.00 0.00 0.00 0.00 0.49 0.00
TSX 0.00 0.00 0.00 0.00 0.41 0.00

Dow Jones 0.00 0.00 0.00 0.00 0.24 0.00
DAX 0.00 0.00 0.67 0.00 0.72 0.00
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Since there is strong evidence to reject the iid assumption and the descriptive statistics
of each return series indicate that the distributions of the return series F are not normal, we
can thereby assume that that financial returns show evidence contradicting the geometric
Brownian motion on which the Black-Scholes Model is based. Furthermore, we can assume
that the analyzed financial returns are heavy-tailed and their tails can be modelled by a
Pareto type distribution.

5.3 Asymptotic Behaviour

To estimate the heaviness of the tails of each stock return distribution, we plotted the Hill
estimator against the largest order statistics. An estimator of ξ for each stock return was
found using the “Eye-ball” technique, where we observed the first regions of stability in
the Hill Plots for each time series.

Table 5.4 summarizes the Hill estimates for each time series analyzed. All the Hill
estimators were less than 0.5 and positive. This suggests that each time series has a finite
second moment.

Table 5.4: The Hill estimates for returns. Standard errors are in parenthesis.

Daily Weekly Monthly
Data left tail right tail left tail right tail left tail right tail

Apple 0.327(0.021) 0.380(0.021) 0.367(0.043) 0.370(0.045) 0.534(0.133) 0.518(0.097)
Google 0.345(0.043) 0.389(0.038) 0.367(0.080) 0.374(0.074) 0.499(0.150) 0.588(0.163)

Microsoft 0.428(0.023) 0.328(0.028) 0.329(0.025) 0.349(0.021) 0.301(0.024) 0.314(0.018)
IBM 0.458(0.025) 0.387(0.025) 0.360(0.048) 0.369(0.045) 0.570(0.124) 0.441(0.107)
GE 0.343(0.028) 0.384(0.027) 0.429(0.055) 0.507(0.065) 0.507(0.065) 0.410(0.099)

FTSE 0.311(0.026) 0.342(0.022) 0.462(0.060) 0.363(0.054) 0.294(0.071) 0.292(0.068)
S&P 500 0.325(0.027) 0.353(0.028) 0.399(0.055) 0.377(0.040) 0.290(0.072) 0.335(0.068)
TSX 0.336(0.032) 0.392(0.024) 0.454(0.057) 0.361(0.039) 0.331(0.078) 0.309(0.064)

Dow Jones 0.337(0.024) 0.369(0.025) 0.428(0.048) 0.331(0.041) 0.348(0.087) 0.336(0.070)
DAX 0.268(0.021) 0.285(0.019) 0.394(0.049) 0.298(0.038) 0.415(0.097) 0.309(0.069)

Our data showed some marked differences in the distributions of stocks and indexes.

In general, the tails of monthly returns for stocks were heavier as time increment ∆t
increased. This suggests that extreme returns, both positive and negative were likelier
between successive months.

The weekly returns for stocks suggests a heavier right tail. One can expect the prob-
ability of extreme positive returns to be greater than the probability of extreme negative
returns for between successive weeks.
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The left tail parameter of was smaller than the right tail parameter for daily returns of
indexes. This indicates that one could expect the probability of extreme positive returns
to be higher than extreme negative returns for daily return series. This characteristic was
reversed for weekly and monthly return series for indexes. Suggesting the opposite is true
for weekly and monthly returns.

Furthermore, we observed that as the time increment ∆t increases, the shape parameter
for the left tail of indexes increased from daily to weekly and then decreased from weekly
to monthly. In general, the left tail shape parameter of weekly indexes was the greatest for
each time increment. This suggests that for indexes, extreme negative returns are more
likely between successive weeks than successive days or months.

The right tail of indexes were in general heavier for monthly series when compared to
the tails of weekly returns. Suggesting the extreme positive returns are more likely during
successive monthly when compared to successive weeks.

Table 5.5: The average Hill estimates for stocks and indexes.

Daily Weekly Monthly
Average left tail right tail left tail right tail left tail right tail

Stocks 0.380 0.373 0.370 0.393 0.482 0.454

indexes 0.315 0.348 0.427 0.346 0.335 0.316

When taking the average of each shape parameter ξ for stocks and indexes with each
time increment and tail (See Table 5.5), we found that in general both tails are heavier for
stocks than for indexes. This suggests that on average, stocks have a greater probability
of extreme realizations when compared to indexes.

40



Chapter 6

Conclusions and Suggestions for
Future Research

Extreme Value Theory provides useful techniques for modelling the distribution of extreme
events. We found that the asymptotic distribution of extreme movements in financial asset
returns are of the Fréchet class of distributions of the general extreme value distribution.
Equivalently, the heaviness of the tail of the distribution of asset returns are related to the
parameter of Fréchet class of distributions, ξ.

With regard to estimating the shape parameter using Hill’s method, we showed that
even in the best case scenario, estimating of ξ is a troublesome using the common “Eye-ball”
technique. Regardless, for each data set, the left tail (minima) and the right tail (maxima)
were modelled. We found that the shape parameter of an asset return changes as time
increment ∆t increases. Thus, implying that the respective distributions are different.
The data showed that stocks generally have heavier tails than indexes, implying that
extreme movements in returns are less likely for indexes when compared to stocks. Such
behaviour is of crucial importance to risk managers since the results could be useful in
testing economic models of booms and crashes which result from speculative bubbles.

We have consider prices to have weak dependence and assumed that prices between
financial assets are independent. However, such an assumptions may not be accurate.
More accurate risk estimators that consider stronger dependence and co-movement of asset
returns are more useful to risk managers.

It is a Stylized Fact that if an asset return series is modelled by a GARCH(p,q) process,
then the distribution of the resulting residuals are heavy-tailed. In future research, we plan
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on modelling the extreme realizations of these residuals using Extreme Value Theory and
investigating how modelling such a behaviour can be used to refine risk indicators.
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